Cargando…

Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells

The traditional medicine Dingqing Tablet produces effective efficacy in treating acute myeloid leukemia, but its specific mechanism remains to be investigated. Dingqing Tablet consists of Codonopsis, Indigo Naturalis, Cortex Moutan, Radix Notoginseng, Citrus Reticulata, and Eolite. The active compon...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Dandan, Zhou, Yongming, Liu, Yong, Ma, Lihai, Meng, Lingzhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894007/
https://www.ncbi.nlm.nih.gov/pubmed/35251215
http://dx.doi.org/10.1155/2022/8383315
_version_ 1784662536319139840
author Zheng, Dandan
Zhou, Yongming
Liu, Yong
Ma, Lihai
Meng, Lingzhan
author_facet Zheng, Dandan
Zhou, Yongming
Liu, Yong
Ma, Lihai
Meng, Lingzhan
author_sort Zheng, Dandan
collection PubMed
description The traditional medicine Dingqing Tablet produces effective efficacy in treating acute myeloid leukemia, but its specific mechanism remains to be investigated. Dingqing Tablet consists of Codonopsis, Indigo Naturalis, Cortex Moutan, Radix Notoginseng, Citrus Reticulata, and Eolite. The active components of Dingqing Tablets were screened by the TCMSP database. Meanwhile, the SwissTargetPrediction database was utilized to predict the corresponding targets. Relevant disease targets of acute myeloid leukemia were obtained from GeneCards. The obtained targets of Dingqing Tablets and genes of acute myeloid leukemia were used, and the overlapped genes were presented in the Venn diagram. A drug-component-target network was constructed via Cytoscape 3.6.0 software. Molecular docking methodology was also used with AutoDock Vina 1.1.2. Furthermore, the effects of kaempferol on the proliferation and apoptosis of HL-60 cells were identified using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-Ethynyl-2′-deoxyuridine (EDU), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assays. The combination of kaempferol and AKT1 was verified using an immunoprecipitation (IP) experiment and the effects of Kaempferol on HL-60 cell apoptosis by western blot (WB) and qPCR. The key component kaempferol and the core target gene AKT1 were sorted out using a drug-component target network diagram. Molecular docking results revealed that the binding energy between kaempferol and AKT1 was lower than -5 kcal/mol. MTT and EDU assays indicated that kaempferol markedly inhibited the proliferation of HL-60 cells. Flow cytometry and TUNEL assays suggested that kaempferol substantially promoted HL-60 cell apoptosis. IP assay results testified that kaempferol could bind to AKT1, thereby reducing the level of P-AKT and promoting HL-60 cell apoptosis. The monomer kaempferol of Dingqing Tablet could promote apoptosis of HL-60 cells, and the mechanism might correlate with the combination of kaempferol and AKT1, reducing the level of P-AKT and promoting the expression of the apoptotic signaling pathway.
format Online
Article
Text
id pubmed-8894007
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-88940072022-03-04 Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells Zheng, Dandan Zhou, Yongming Liu, Yong Ma, Lihai Meng, Lingzhan Evid Based Complement Alternat Med Research Article The traditional medicine Dingqing Tablet produces effective efficacy in treating acute myeloid leukemia, but its specific mechanism remains to be investigated. Dingqing Tablet consists of Codonopsis, Indigo Naturalis, Cortex Moutan, Radix Notoginseng, Citrus Reticulata, and Eolite. The active components of Dingqing Tablets were screened by the TCMSP database. Meanwhile, the SwissTargetPrediction database was utilized to predict the corresponding targets. Relevant disease targets of acute myeloid leukemia were obtained from GeneCards. The obtained targets of Dingqing Tablets and genes of acute myeloid leukemia were used, and the overlapped genes were presented in the Venn diagram. A drug-component-target network was constructed via Cytoscape 3.6.0 software. Molecular docking methodology was also used with AutoDock Vina 1.1.2. Furthermore, the effects of kaempferol on the proliferation and apoptosis of HL-60 cells were identified using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-Ethynyl-2′-deoxyuridine (EDU), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assays. The combination of kaempferol and AKT1 was verified using an immunoprecipitation (IP) experiment and the effects of Kaempferol on HL-60 cell apoptosis by western blot (WB) and qPCR. The key component kaempferol and the core target gene AKT1 were sorted out using a drug-component target network diagram. Molecular docking results revealed that the binding energy between kaempferol and AKT1 was lower than -5 kcal/mol. MTT and EDU assays indicated that kaempferol markedly inhibited the proliferation of HL-60 cells. Flow cytometry and TUNEL assays suggested that kaempferol substantially promoted HL-60 cell apoptosis. IP assay results testified that kaempferol could bind to AKT1, thereby reducing the level of P-AKT and promoting HL-60 cell apoptosis. The monomer kaempferol of Dingqing Tablet could promote apoptosis of HL-60 cells, and the mechanism might correlate with the combination of kaempferol and AKT1, reducing the level of P-AKT and promoting the expression of the apoptotic signaling pathway. Hindawi 2022-02-24 /pmc/articles/PMC8894007/ /pubmed/35251215 http://dx.doi.org/10.1155/2022/8383315 Text en Copyright © 2022 Dandan Zheng et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zheng, Dandan
Zhou, Yongming
Liu, Yong
Ma, Lihai
Meng, Lingzhan
Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells
title Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells
title_full Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells
title_fullStr Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells
title_full_unstemmed Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells
title_short Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells
title_sort molecular mechanism investigation on monomer kaempferol of the traditional medicine dingqing tablet in promoting apoptosis of acute myeloid leukemia hl-60 cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894007/
https://www.ncbi.nlm.nih.gov/pubmed/35251215
http://dx.doi.org/10.1155/2022/8383315
work_keys_str_mv AT zhengdandan molecularmechanisminvestigationonmonomerkaempferolofthetraditionalmedicinedingqingtabletinpromotingapoptosisofacutemyeloidleukemiahl60cells
AT zhouyongming molecularmechanisminvestigationonmonomerkaempferolofthetraditionalmedicinedingqingtabletinpromotingapoptosisofacutemyeloidleukemiahl60cells
AT liuyong molecularmechanisminvestigationonmonomerkaempferolofthetraditionalmedicinedingqingtabletinpromotingapoptosisofacutemyeloidleukemiahl60cells
AT malihai molecularmechanisminvestigationonmonomerkaempferolofthetraditionalmedicinedingqingtabletinpromotingapoptosisofacutemyeloidleukemiahl60cells
AT menglingzhan molecularmechanisminvestigationonmonomerkaempferolofthetraditionalmedicinedingqingtabletinpromotingapoptosisofacutemyeloidleukemiahl60cells