Cargando…
Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review
When put into practice in the real world, predictive maintenance presents a set of challenges for fault detection and prognosis that are often overlooked in studies validated with data from controlled experiments, or numeric simulations. For this reason, this study aims to review the recent advancem...
Autores principales: | Fernandes, Marta, Corchado, Juan Manuel, Marreiros, Goreti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894092/ https://www.ncbi.nlm.nih.gov/pubmed/35261480 http://dx.doi.org/10.1007/s10489-022-03344-3 |
Ejemplares similares
-
CAFD: Context-Aware Fault Diagnostic Scheme towards Sensor Faults Utilizing Machine Learning
por: Saeed, Umer, et al.
Publicado: (2021) -
Deep Learning Techniques in Intelligent Fault Diagnosis and Prognosis for Industrial Systems: A Review
por: Qiu, Shaohua, et al.
Publicado: (2023) -
Operational data for fault prognosis in particle accelerators with machine learning
por: Radaideh, Majdi I., et al.
Publicado: (2023) -
Hybrid fault tolerance techniques to detect transient faults in embedded processors
por: Azambuja, José Rodrigo, et al.
Publicado: (2014) -
The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines
por: de las Morenas, Javier, et al.
Publicado: (2023)