Cargando…
Automatic seizure detection with different time delays using SDFT and time-domain feature extraction
Automatic seizure detection is important for fast detection of the seizure because the way that the expert denotes and searches for seizure in the long signal takes time. The most common way to detect seizures automatically is to use an electroencephalogram (EEG). Many studies have used feature extr...
Autores principales: | Abdulhussien, Amal S., AbdulSaddaa, Ahmad T., Iqbal, Kamran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of Journal of Biomedical Research
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894282/ https://www.ncbi.nlm.nih.gov/pubmed/35403610 http://dx.doi.org/10.7555/JBR.36.20210124 |
Ejemplares similares
-
Biplanar High-Speed Fluoroscopy of Pony Superficial Digital Flexor Tendon (SDFT)—An In Vivo Pilot Study
por: Wagner, Franziska C., et al.
Publicado: (2021) -
Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT)
por: Williamson, Kate Ann, et al.
Publicado: (2015) -
Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks
por: Tzallas, A. T., et al.
Publicado: (2007) -
Method for Automatic Estimation of Instantaneous Frequency and Group Delay in Time–Frequency Distributions with Application in EEG Seizure Signals Analysis
por: Jurdana, Vedran, et al.
Publicado: (2023) -
Modified Time-Frequency Marginal Features for Detection of Seizures in Newborns
por: Khan, Nabeel Ali, et al.
Publicado: (2022)