Cargando…
Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease
Deep learning models can enable accurate and efficient disease diagnosis, but have thus far been hampered by the data scarcity present in the medical world. Automated diagnosis studies have been constrained by underpowered single-center datasets, and although some results have shown promise, their g...
Autores principales: | Linardos, Akis, Kushibar, Kaisar, Walsh, Sean, Gkontra, Polyxeni, Lekadir, Karim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894335/ https://www.ncbi.nlm.nih.gov/pubmed/35241683 http://dx.doi.org/10.1038/s41598-022-07186-4 |
Ejemplares similares
-
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
por: Garrucho, Lidia, et al.
Publicado: (2023) -
Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance
por: Izquierdo, Cristian, et al.
Publicado: (2021) -
New Imaging Signatures of Cardiac Alterations in Ischaemic Heart Disease and Cerebrovascular Disease Using CMR Radiomics
por: Rauseo, Elisa, et al.
Publicado: (2021) -
Estimation of biological heart age using cardiovascular magnetic resonance radiomics
por: Raisi-Estabragh, Zahra, et al.
Publicado: (2022) -
Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging
por: Szabo, Liliana, et al.
Publicado: (2022)