Cargando…

Creating hot spots within air for better sensitivity through design of oblique-wire-bundle metamaterial perfect absorbers

Better sensitivity of a biosensor could boost up the detection limit of analytes, thus a must in the fields of bio-sensing and bio-detection. To further enhance the sensitivity of a biosensor, in this work, we design an oblique-flat-sheet metamaterial perfect absorber (MPA) to concentrate the hot sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xin-Xian, Lu, Cheng-Yu, Huang, Tsung-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894341/
https://www.ncbi.nlm.nih.gov/pubmed/35241730
http://dx.doi.org/10.1038/s41598-022-07338-6
Descripción
Sumario:Better sensitivity of a biosensor could boost up the detection limit of analytes, thus a must in the fields of bio-sensing and bio-detection. To further enhance the sensitivity of a biosensor, in this work, we design an oblique-flat-sheet metamaterial perfect absorber (MPA) to concentrate the hot spots within air between the oblique flat sheet and the continuous ground metal, thus enabling fully interaction between analytes and hot spots. The corresponding field distributions in simulation corroborated our assumption and its sensitivity could be up to 1049 nm/RIU. Then, we fabricated the sample by e-beam lithography process for a seed layer and simply tilting the sample during deposition to obtain oblique flat sheets. When considering the stochastic nature of the deposited multiple oblique flat sheets, we modified the metallic upper resonator of the MPA from the single oblique-flat-sheet into randomly distributed oblique-wire-bundle (OWB) and in simulation, its sensitivity is boosted up to 3319 nm/RIU. In experiments, the measured sensitivity is 1329 nm/RIU under different concentrations of glucose solutions that is four times larger than the 330 nm/RIU of the planar MPA. The higher sensitivity was attributed to that the OWB MPA could provide hot spots within air not only between OWB and grounded metal but also among wires. Moreover, the OWB could also trap and concentrate the analytes locally.