Cargando…
Boosting the predictive performance with aqueous solubility dataset curation
Intrinsic solubility is a critical property in pharmaceutical industry that impacts in-vivo bioavailability of small molecule drugs. However, solubility prediction with Artificial Intelligence(AI) are facing insufficient data, poor data quality, and no unified measurements for AI and physics-based a...
Autores principales: | Meng, Jintao, Chen, Peng, Wahib, Mohamed, Yang, Mingjun, Zheng, Liangzhen, Wei, Yanjie, Feng, Shengzhong, Liu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894363/ https://www.ncbi.nlm.nih.gov/pubmed/35241693 http://dx.doi.org/10.1038/s41597-022-01154-3 |
Ejemplares similares
-
A beginner’s guide into curated analyses of open access datasets for biomarker discovery in neurodegeneration
por: Gomes Moreira, Diana, et al.
Publicado: (2023) -
Boosting healthier choices
por: Rouyard, Thomas, et al.
Publicado: (2022) -
SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores
por: Meng, Jintao, et al.
Publicado: (2014) -
Integrated analysis of a compendium of RNA-Seq datasets for splicing factors
por: Yu, Peng, et al.
Publicado: (2020) -
An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power
por: Sterl, Sebastian, et al.
Publicado: (2022)