Cargando…

Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission

Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text] ) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yun, Yang, Bingyi, Cobey, Sarah, Lau, Eric H. Y., Adam, Dillon C., Wong, Jessica Y., Bond, Helen S., Cheung, Justin K., Ho, Faith, Gao, Huizhi, Ali, Sheikh Taslim, Leung, Nancy H. L., Tsang, Tim K., Wu, Peng, Leung, Gabriel M., Cowling, Benjamin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894407/
https://www.ncbi.nlm.nih.gov/pubmed/35241662
http://dx.doi.org/10.1038/s41467-022-28812-9
_version_ 1784662653578248192
author Lin, Yun
Yang, Bingyi
Cobey, Sarah
Lau, Eric H. Y.
Adam, Dillon C.
Wong, Jessica Y.
Bond, Helen S.
Cheung, Justin K.
Ho, Faith
Gao, Huizhi
Ali, Sheikh Taslim
Leung, Nancy H. L.
Tsang, Tim K.
Wu, Peng
Leung, Gabriel M.
Cowling, Benjamin J.
author_facet Lin, Yun
Yang, Bingyi
Cobey, Sarah
Lau, Eric H. Y.
Adam, Dillon C.
Wong, Jessica Y.
Bond, Helen S.
Cheung, Justin K.
Ho, Faith
Gao, Huizhi
Ali, Sheikh Taslim
Leung, Nancy H. L.
Tsang, Tim K.
Wu, Peng
Leung, Gabriel M.
Cowling, Benjamin J.
author_sort Lin, Yun
collection PubMed
description Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text] ) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models applied to case counts and typically suffer lags of more than a week because of the latent period and reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis of the distribution of viral loads among confirmed cases can provide insights into epidemic trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in Hong Kong, identifying a strong correlation between temporal changes in the distribution of viral loads (measured by RT-qPCR cycle threshold values) and estimates of [Formula: see text] based on case counts. We demonstrate that cycle threshold values could be used to improve real-time [Formula: see text] estimation, enabling more timely tracking of epidemic dynamics.
format Online
Article
Text
id pubmed-8894407
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88944072022-03-17 Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission Lin, Yun Yang, Bingyi Cobey, Sarah Lau, Eric H. Y. Adam, Dillon C. Wong, Jessica Y. Bond, Helen S. Cheung, Justin K. Ho, Faith Gao, Huizhi Ali, Sheikh Taslim Leung, Nancy H. L. Tsang, Tim K. Wu, Peng Leung, Gabriel M. Cowling, Benjamin J. Nat Commun Article Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text] ) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models applied to case counts and typically suffer lags of more than a week because of the latent period and reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis of the distribution of viral loads among confirmed cases can provide insights into epidemic trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in Hong Kong, identifying a strong correlation between temporal changes in the distribution of viral loads (measured by RT-qPCR cycle threshold values) and estimates of [Formula: see text] based on case counts. We demonstrate that cycle threshold values could be used to improve real-time [Formula: see text] estimation, enabling more timely tracking of epidemic dynamics. Nature Publishing Group UK 2022-03-03 /pmc/articles/PMC8894407/ /pubmed/35241662 http://dx.doi.org/10.1038/s41467-022-28812-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lin, Yun
Yang, Bingyi
Cobey, Sarah
Lau, Eric H. Y.
Adam, Dillon C.
Wong, Jessica Y.
Bond, Helen S.
Cheung, Justin K.
Ho, Faith
Gao, Huizhi
Ali, Sheikh Taslim
Leung, Nancy H. L.
Tsang, Tim K.
Wu, Peng
Leung, Gabriel M.
Cowling, Benjamin J.
Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission
title Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission
title_full Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission
title_fullStr Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission
title_full_unstemmed Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission
title_short Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission
title_sort incorporating temporal distribution of population-level viral load enables real-time estimation of covid-19 transmission
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894407/
https://www.ncbi.nlm.nih.gov/pubmed/35241662
http://dx.doi.org/10.1038/s41467-022-28812-9
work_keys_str_mv AT linyun incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT yangbingyi incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT cobeysarah incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT lauerichy incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT adamdillonc incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT wongjessicay incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT bondhelens incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT cheungjustink incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT hofaith incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT gaohuizhi incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT alisheikhtaslim incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT leungnancyhl incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT tsangtimk incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT wupeng incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT leunggabrielm incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission
AT cowlingbenjaminj incorporatingtemporaldistributionofpopulationlevelviralloadenablesrealtimeestimationofcovid19transmission