Cargando…
A pavement distresses identification method optimized for YOLOv5s
Automatic detection and recognition of pavement distresses is the key to timely repair of pavement. Repairing the pavement distresses in time can prevent the destruction of road structure and the occurrence of traffic accidents. However, some other factors, such as a single object category, shading...
Autores principales: | Guo, Keyou, He, Chengbo, Yang, Min, Wang, Sudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894420/ https://www.ncbi.nlm.nih.gov/pubmed/35241746 http://dx.doi.org/10.1038/s41598-022-07527-3 |
Ejemplares similares
-
Pavement Disease Detection through Improved YOLOv5s Neural Network
por: Chu, Yinze, et al.
Publicado: (2022) -
PDNet: Improved YOLOv5 Nondeformable Disease Detection Network for Asphalt Pavement
por: Yang, Zhen, et al.
Publicado: (2022) -
Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
por: Huang, Peile, et al.
Publicado: (2023) -
ROADS—Rover for Bituminous Pavement Distress Survey: An Unmanned Ground Vehicle (UGV) Prototype for Pavement Distress Evaluation
por: Mei, Alessandro, et al.
Publicado: (2022) -
A YOLOv7 incorporating the Adan optimizer based corn pests identification method
por: Zhang, Chong, et al.
Publicado: (2023)