Cargando…
A collagen membrane for periosteal expansion osteogenesis using a timed-release system in rabbit calvaria
BACKGROUND: The purpose of this study was to evaluate the effects of resorbable membranes, combined with a shape memory alloy (SMA) mesh device, on bone formation using a timed-release system for periosteal expansion osteogenesis (TIME-PEO). MATERIALS AND METHODS: Twelve Japanese white rabbits were...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894520/ https://www.ncbi.nlm.nih.gov/pubmed/35243561 http://dx.doi.org/10.1186/s40729-022-00407-5 |
Sumario: | BACKGROUND: The purpose of this study was to evaluate the effects of resorbable membranes, combined with a shape memory alloy (SMA) mesh device, on bone formation using a timed-release system for periosteal expansion osteogenesis (TIME-PEO). MATERIALS AND METHODS: Twelve Japanese white rabbits were used in this study. An SMA device was inserted under the forehead periosteum, pushed and bent for attachment to the bone surface, and then fixed using resorbable thread. The rabbits were divided into four groups: C1 (5 weeks postoperatively without membrane), C2 (8 weeks postoperatively without membrane), E1 (5 weeks postoperatively with membrane), and E2 (8 weeks postoperatively with membrane). The rabbits were killed 5 or 8 weeks after the operation and the newly formed bone was assessed histologically and radiographically. RESULTS: SMA devices, concealed under soft tissue until the time of euthanasia, did not cause active inflammation. The mean activation height, from the original bone surface to the midpoint of the mesh, was 3.1 ± 0.6 mm. Newly formed bone was observed, and most of the subperiosteal space underneath the device was occupied by fibrous tissue. Immature bone was present at the outer surface of the original skull bone in all groups. On histomorphometric analysis, there was no significant difference in the volume of the new bone between C1 and E1 (p = 0.885), and C2 and E2 (p = 0.545). CONCLUSIONS: PEO using an SMA mesh device, which is based on guided bone regeneration (in atrophic alveolar bone), shows promise as an alternative for bone augmentation, irrespective of whether a resorbable membrane is used. |
---|