Cargando…

Characterization, antioxidant and anticoagulant properties of exopolysaccharide from marine microalgae

The sulfated exopolysaccharide extracted from marine microalgae attracted considerable attention from both the nutraceutical and pharmaceutical industries. In the present study biomass of five marine microalgae were screened to find strains with high capacity for the production of sulfated exopolysa...

Descripción completa

Detalles Bibliográficos
Autores principales: Mousavian, Zahra, Safavi, Maliheh, Azizmohseni, Farzaneh, Hadizadeh, Mahnaz, Mirdamadi, Saeed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894541/
https://www.ncbi.nlm.nih.gov/pubmed/35239029
http://dx.doi.org/10.1186/s13568-022-01365-2
Descripción
Sumario:The sulfated exopolysaccharide extracted from marine microalgae attracted considerable attention from both the nutraceutical and pharmaceutical industries. In the present study biomass of five marine microalgae were screened to find strains with high capacity for the production of sulfated exopolysaccharides. The anticoagulant and antioxidant activities of extracted sulfated polysaccharides were evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT), DPPH and ABTS assays, respectively. The sulfated polysaccharides extracted from Picochlorum sp. showed a strong DPPH scavenging effect with 85% antioxidant activity. The sulfated polysaccharides of Chlorella sorokiniana, Chlorella sp. (L(2)) and Chlorella sp. (D(1)) scavenged more than 90% of the ABTS radicals. However, the sulfated polysaccharide extracted from Chlorella sorokiniana, and Chlorella sp. (N4) showed anticoagulant properties. The dual anticoagulant-antioxidant activities in Chlorella sorokiniana could be explained by the combination of various factors including sulfate content and their binding site, monosaccharide residue and glycoside bond which are involved in the polysaccharide’s bioactivity.