Cargando…
Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring
Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894879/ https://www.ncbi.nlm.nih.gov/pubmed/35252128 http://dx.doi.org/10.3389/fbioe.2022.805176 |
_version_ | 1784662784511836160 |
---|---|
author | Carvalho, Sofia B. Silva, Ricardo J. S. Sousa, Marcos F. Q. Peixoto, Cristina Roldão, António Carrondo, Manuel J. T. Alves, Paula M. |
author_facet | Carvalho, Sofia B. Silva, Ricardo J. S. Sousa, Marcos F. Q. Peixoto, Cristina Roldão, António Carrondo, Manuel J. T. Alves, Paula M. |
author_sort | Carvalho, Sofia B. |
collection | PubMed |
description | Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies — nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs’ thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90–115 nm for NTA and 129–141 nm for TRPS), surface charges (average of −20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization. |
format | Online Article Text |
id | pubmed-8894879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88948792022-03-05 Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring Carvalho, Sofia B. Silva, Ricardo J. S. Sousa, Marcos F. Q. Peixoto, Cristina Roldão, António Carrondo, Manuel J. T. Alves, Paula M. Front Bioeng Biotechnol Bioengineering and Biotechnology Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies — nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs’ thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90–115 nm for NTA and 129–141 nm for TRPS), surface charges (average of −20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization. Frontiers Media S.A. 2022-02-18 /pmc/articles/PMC8894879/ /pubmed/35252128 http://dx.doi.org/10.3389/fbioe.2022.805176 Text en Copyright © 2022 Carvalho, Silva, Sousa, Peixoto, Roldão, Carrondo and Alves. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Carvalho, Sofia B. Silva, Ricardo J. S. Sousa, Marcos F. Q. Peixoto, Cristina Roldão, António Carrondo, Manuel J. T. Alves, Paula M. Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring |
title | Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring |
title_full | Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring |
title_fullStr | Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring |
title_full_unstemmed | Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring |
title_short | Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring |
title_sort | bioanalytics for influenza virus-like particle characterization and process monitoring |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894879/ https://www.ncbi.nlm.nih.gov/pubmed/35252128 http://dx.doi.org/10.3389/fbioe.2022.805176 |
work_keys_str_mv | AT carvalhosofiab bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring AT silvaricardojs bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring AT sousamarcosfq bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring AT peixotocristina bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring AT roldaoantonio bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring AT carrondomanueljt bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring AT alvespaulam bioanalyticsforinfluenzaviruslikeparticlecharacterizationandprocessmonitoring |