Cargando…
A New Class of Electronic Devices Based on Flexible Porous Substrates
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New‐concept electronic devices including e‐skins, nanogenerators, brain–machine interfaces, and implantable medical devices, can work on or inside human bodies, calling f...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895116/ https://www.ncbi.nlm.nih.gov/pubmed/35038244 http://dx.doi.org/10.1002/advs.202105084 |
_version_ | 1784662843515207680 |
---|---|
author | Zhang, Yiyuan Zhang, Tengyuan Huang, Zhandong Yang, Jun |
author_facet | Zhang, Yiyuan Zhang, Tengyuan Huang, Zhandong Yang, Jun |
author_sort | Zhang, Yiyuan |
collection | PubMed |
description | With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New‐concept electronic devices including e‐skins, nanogenerators, brain–machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high‐performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate‐based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed. |
format | Online Article Text |
id | pubmed-8895116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88951162022-03-10 A New Class of Electronic Devices Based on Flexible Porous Substrates Zhang, Yiyuan Zhang, Tengyuan Huang, Zhandong Yang, Jun Adv Sci (Weinh) Reviews With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New‐concept electronic devices including e‐skins, nanogenerators, brain–machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high‐performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate‐based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed. John Wiley and Sons Inc. 2022-01-17 /pmc/articles/PMC8895116/ /pubmed/35038244 http://dx.doi.org/10.1002/advs.202105084 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Zhang, Yiyuan Zhang, Tengyuan Huang, Zhandong Yang, Jun A New Class of Electronic Devices Based on Flexible Porous Substrates |
title | A New Class of Electronic Devices Based on Flexible Porous Substrates |
title_full | A New Class of Electronic Devices Based on Flexible Porous Substrates |
title_fullStr | A New Class of Electronic Devices Based on Flexible Porous Substrates |
title_full_unstemmed | A New Class of Electronic Devices Based on Flexible Porous Substrates |
title_short | A New Class of Electronic Devices Based on Flexible Porous Substrates |
title_sort | new class of electronic devices based on flexible porous substrates |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895116/ https://www.ncbi.nlm.nih.gov/pubmed/35038244 http://dx.doi.org/10.1002/advs.202105084 |
work_keys_str_mv | AT zhangyiyuan anewclassofelectronicdevicesbasedonflexibleporoussubstrates AT zhangtengyuan anewclassofelectronicdevicesbasedonflexibleporoussubstrates AT huangzhandong anewclassofelectronicdevicesbasedonflexibleporoussubstrates AT yangjun anewclassofelectronicdevicesbasedonflexibleporoussubstrates AT zhangyiyuan newclassofelectronicdevicesbasedonflexibleporoussubstrates AT zhangtengyuan newclassofelectronicdevicesbasedonflexibleporoussubstrates AT huangzhandong newclassofelectronicdevicesbasedonflexibleporoussubstrates AT yangjun newclassofelectronicdevicesbasedonflexibleporoussubstrates |