Cargando…

The effect of zinc-biofortified rice on zinc status of Bangladeshi preschool children: a randomized, double-masked, household-based, controlled trial

BACKGROUND: Zinc biofortification of rice could sustainably improve zinc status in countries where zinc deficiency is common and rice is a staple, but its efficacy has not been tested. Fatty acid desaturases (FADS) are putative new zinc status biomarkers. OBJECTIVES: Our objective was to test the ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Jongstra, Roelinda, Hossain, Md Mokbul, Galetti, Valeria, Hall, Andrew G, Holt, Roberta R, Cercamondi, Colin I, Rashid, Sabina F, Zimmermann, Michael B, Mridha, Malay K, Wegmueller, Rita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895213/
https://www.ncbi.nlm.nih.gov/pubmed/34792094
http://dx.doi.org/10.1093/ajcn/nqab379
Descripción
Sumario:BACKGROUND: Zinc biofortification of rice could sustainably improve zinc status in countries where zinc deficiency is common and rice is a staple, but its efficacy has not been tested. Fatty acid desaturases (FADS) are putative new zinc status biomarkers. OBJECTIVES: Our objective was to test the efficacy of zinc-biofortified rice (BFR) in preschool-aged children with zinc deficiency. Our hypothesis was that consumption of BFR would increase plasma zinc concentration (PZC). METHODS: We conducted a 9-mo, double-masked intervention trial in 12–36-mo-old rural Bangladeshi children, most of whom were zinc-deficient (PZC <70 µg/dL) and stunted (n = 520). The children were randomly assigned to receive either control rice (CR) or BFR provided in cooked portions to their households daily, with compliance monitoring. The primary outcome was PZC. Secondary outcomes were zinc deficiency, linear growth, infection-related morbidity, FADS activity indices, intestinal fatty acid binding protein (I-FABP) and fecal calprotectin. We applied sparse serial sampling for midpoint measures and analyzed data by intention-to-treat using mixed-effects models. RESULTS: At baseline, median (IQR) PZC was 60.4 (56.3–64.3) µg/dL, 78.1% of children were zinc deficient, and 59.7% were stunted. Mean ± SD daily zinc intakes from the CR and BFR during the trial were 1.20 ± 0.34 and 2.22 ± 0.47 mg/d, respectively (P < 0.001). There were no significant time-by-treatment effects on PZC, zinc deficiency prevalence, FADS activity, I-FABP, or fecal calprotectin (all P > 0.05). There was a time–treatment interaction for height-for-age z-scores (P < 0.001) favoring the BFR group. The morbidity longitudinal prevalence ratio was 1.08 (95% CI: 1.05, 1.12) comparing the BFR and CR groups, due to more upper respiratory tract illness in the BFR group. CONCLUSIONS: Consumption of BFR for 9 mo providing ∼1 mg of additional zinc daily to Bangladeshi children did not significantly affect PZC, prevalence of zinc deficiency, or FADS activity. The trial was registered at clinicaltrials.gov as NCT03079583.