Cargando…
Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images
BACKGROUND: Epidermal growth factor receptor (EGFR) genotyping and programmed death ligand-1 (PD-L1) expressions are of paramount importance for treatment guidelines such as the use of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) in lung cancer. Conventional identificati...
Autores principales: | Wang, Chengdi, Ma, Jiechao, Shao, Jun, Zhang, Shu, Liu, Zhongnan, Yu, Yizhou, Li, Weimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895233/ https://www.ncbi.nlm.nih.gov/pubmed/35250988 http://dx.doi.org/10.3389/fimmu.2022.813072 |
Ejemplares similares
-
Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC
por: Wang, Chengdi, et al.
Publicado: (2022) -
Radiogenomic System for Non-Invasive Identification of Multiple Actionable Mutations and PD-L1 Expression in Non-Small Cell Lung Cancer Based on CT Images
por: Shao, Jun, et al.
Publicado: (2022) -
Deep Learning to Predict EGFR Mutation and PD-L1 Expression Status in Non-Small-Cell Lung Cancer on Computed Tomography Images
por: Wang, Chengdi, et al.
Publicado: (2021) -
Efficacy of ICI-based treatment in advanced NSCLC patients with PD-L1≥50% who developed EGFR-TKI resistance
por: Li, Yujing, et al.
Publicado: (2023) -
Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection
por: Liang, Shufan, et al.
Publicado: (2022)