Cargando…

Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity

[Image: see text] The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal–organic framework (MOF)-based material that fosters a unique...

Descripción completa

Detalles Bibliográficos
Autores principales: Caamaño, Katia, Heras-Mozos, Raquel, Calbo, Joaquín, Díaz, Jesús Cases, Waerenborgh, João C., Vieira, Bruno J. C., Hernández-Muñoz, Pilar, Gavara, Rafael, Giménez-Marqués, Mónica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895383/
https://www.ncbi.nlm.nih.gov/pubmed/35179870
http://dx.doi.org/10.1021/acsami.1c21555
_version_ 1784662913459421184
author Caamaño, Katia
Heras-Mozos, Raquel
Calbo, Joaquín
Díaz, Jesús Cases
Waerenborgh, João C.
Vieira, Bruno J. C.
Hernández-Muñoz, Pilar
Gavara, Rafael
Giménez-Marqués, Mónica
author_facet Caamaño, Katia
Heras-Mozos, Raquel
Calbo, Joaquín
Díaz, Jesús Cases
Waerenborgh, João C.
Vieira, Bruno J. C.
Hernández-Muñoz, Pilar
Gavara, Rafael
Giménez-Marqués, Mónica
author_sort Caamaño, Katia
collection PubMed
description [Image: see text] The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal–organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.
format Online
Article
Text
id pubmed-8895383
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-88953832022-03-07 Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity Caamaño, Katia Heras-Mozos, Raquel Calbo, Joaquín Díaz, Jesús Cases Waerenborgh, João C. Vieira, Bruno J. C. Hernández-Muñoz, Pilar Gavara, Rafael Giménez-Marqués, Mónica ACS Appl Mater Interfaces [Image: see text] The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal–organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations. American Chemical Society 2022-02-18 2022-03-02 /pmc/articles/PMC8895383/ /pubmed/35179870 http://dx.doi.org/10.1021/acsami.1c21555 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Caamaño, Katia
Heras-Mozos, Raquel
Calbo, Joaquín
Díaz, Jesús Cases
Waerenborgh, João C.
Vieira, Bruno J. C.
Hernández-Muñoz, Pilar
Gavara, Rafael
Giménez-Marqués, Mónica
Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
title Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
title_full Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
title_fullStr Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
title_full_unstemmed Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
title_short Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity
title_sort exploiting the redox activity of mil-100(fe) carrier enables prolonged carvacrol antimicrobial activity
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895383/
https://www.ncbi.nlm.nih.gov/pubmed/35179870
http://dx.doi.org/10.1021/acsami.1c21555
work_keys_str_mv AT caamanokatia exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT herasmozosraquel exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT calbojoaquin exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT diazjesuscases exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT waerenborghjoaoc exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT vieirabrunojc exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT hernandezmunozpilar exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT gavararafael exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity
AT gimenezmarquesmonica exploitingtheredoxactivityofmil100fecarrierenablesprolongedcarvacrolantimicrobialactivity