Cargando…
Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair
Mesenchymal progenitor cells (MPCs) have shown promise initiating articular cartilage repair, with benefits largely attributed to the trophic factors they secrete. These factors can be found in the conditioned medium (CM) collected from cell cultures, and it is believed that extracellular vesicles (...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895489/ https://www.ncbi.nlm.nih.gov/pubmed/35641171 http://dx.doi.org/10.1093/stcltm/szab008 |
_version_ | 1784662936456790016 |
---|---|
author | Phelps, Jolene Leonard, Catherine Shah, Sophia Krawetz, Roman Hart, David A Duncan, Neil A Sen, Arindom |
author_facet | Phelps, Jolene Leonard, Catherine Shah, Sophia Krawetz, Roman Hart, David A Duncan, Neil A Sen, Arindom |
author_sort | Phelps, Jolene |
collection | PubMed |
description | Mesenchymal progenitor cells (MPCs) have shown promise initiating articular cartilage repair, with benefits largely attributed to the trophic factors they secrete. These factors can be found in the conditioned medium (CM) collected from cell cultures, and it is believed that extracellular vesicles (EVs) within this CM are at least partially responsible for MPC therapeutic efficacy. This study aimed to examine the functionality of the EV fraction of CM compared to whole CM obtained from human adipose-derived MPCs in an in vivo murine cartilage defect model. Mice treated with whole CM or the EV fraction demonstrated an enhanced cartilage repair score and type II collagen deposition at the injury site compared to saline controls. We then developed a scalable bioprocess using stirred suspension bioreactors (SSBs) to generate clinically relevant quantities of MPC-EVs. Whereas static monolayer culture systems are simple to use and readily accessible, SSBs offer increased scalability and a more homogenous environment due to constant mixing. This study evaluated the biochemical and functional properties of MPCs and their EV fractions generated in static culture versus SSBs. Functionality was assessed using in vitro MPC chondrogenesis as an outcome measure. SSBs supported increased MPC expression of cartilage-specific genes, and EV fractions derived from both static and SSB culture systems upregulated type II collagen production by MPCs. These results suggest that SSBs are an effective platform for the generation of MPC-derived EVs with the potential to induce cartilage repair. |
format | Online Article Text |
id | pubmed-8895489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88954892022-03-07 Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair Phelps, Jolene Leonard, Catherine Shah, Sophia Krawetz, Roman Hart, David A Duncan, Neil A Sen, Arindom Stem Cells Transl Med Manufacturing for Regenerative Medicine Mesenchymal progenitor cells (MPCs) have shown promise initiating articular cartilage repair, with benefits largely attributed to the trophic factors they secrete. These factors can be found in the conditioned medium (CM) collected from cell cultures, and it is believed that extracellular vesicles (EVs) within this CM are at least partially responsible for MPC therapeutic efficacy. This study aimed to examine the functionality of the EV fraction of CM compared to whole CM obtained from human adipose-derived MPCs in an in vivo murine cartilage defect model. Mice treated with whole CM or the EV fraction demonstrated an enhanced cartilage repair score and type II collagen deposition at the injury site compared to saline controls. We then developed a scalable bioprocess using stirred suspension bioreactors (SSBs) to generate clinically relevant quantities of MPC-EVs. Whereas static monolayer culture systems are simple to use and readily accessible, SSBs offer increased scalability and a more homogenous environment due to constant mixing. This study evaluated the biochemical and functional properties of MPCs and their EV fractions generated in static culture versus SSBs. Functionality was assessed using in vitro MPC chondrogenesis as an outcome measure. SSBs supported increased MPC expression of cartilage-specific genes, and EV fractions derived from both static and SSB culture systems upregulated type II collagen production by MPCs. These results suggest that SSBs are an effective platform for the generation of MPC-derived EVs with the potential to induce cartilage repair. Oxford University Press 2022-03-03 /pmc/articles/PMC8895489/ /pubmed/35641171 http://dx.doi.org/10.1093/stcltm/szab008 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Manufacturing for Regenerative Medicine Phelps, Jolene Leonard, Catherine Shah, Sophia Krawetz, Roman Hart, David A Duncan, Neil A Sen, Arindom Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair |
title | Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair |
title_full | Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair |
title_fullStr | Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair |
title_full_unstemmed | Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair |
title_short | Production of Mesenchymal Progenitor Cell-Derived Extracellular Vesicles in Suspension Bioreactors for Use in Articular Cartilage Repair |
title_sort | production of mesenchymal progenitor cell-derived extracellular vesicles in suspension bioreactors for use in articular cartilage repair |
topic | Manufacturing for Regenerative Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895489/ https://www.ncbi.nlm.nih.gov/pubmed/35641171 http://dx.doi.org/10.1093/stcltm/szab008 |
work_keys_str_mv | AT phelpsjolene productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair AT leonardcatherine productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair AT shahsophia productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair AT krawetzroman productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair AT hartdavida productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair AT duncanneila productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair AT senarindom productionofmesenchymalprogenitorcellderivedextracellularvesiclesinsuspensionbioreactorsforuseinarticularcartilagerepair |