Cargando…
DeSIDE-DDI: interpretable prediction of drug-drug interactions using drug-induced gene expressions
Adverse drug-drug interaction (DDI) is a major concern to polypharmacy due to its unexpected adverse side effects and must be identified at an early stage of drug discovery and development. Many computational methods have been proposed for this purpose, but most require specific types of information...
Autores principales: | Kim, Eunyoung, Nam, Hojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895921/ https://www.ncbi.nlm.nih.gov/pubmed/35246258 http://dx.doi.org/10.1186/s13321-022-00589-5 |
Ejemplares similares
-
Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints
por: Kim, Eunyoung, et al.
Publicado: (2017) -
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
por: Schwarz, Kyriakos, et al.
Publicado: (2021) -
DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction
por: Yang, Jie, et al.
Publicado: (2023) -
DDI-CPI, a server that predicts drug–drug interactions through implementing the chemical–protein interactome
por: Luo, Heng, et al.
Publicado: (2014) -
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
por: Zheng, Yi, et al.
Publicado: (2019)