Cargando…
scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
A system-level understanding of the regulation and coordination mechanisms of gene expression is essential for studying the complexity of biological processes in health and disease. With the rapid development of single-cell RNA sequencing technologies, it is now possible to investigate gene interact...
Autores principales: | Li, Wei Vivian, Li, Yanzeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896229/ https://www.ncbi.nlm.nih.gov/pubmed/34252628 http://dx.doi.org/10.1016/j.gpb.2020.11.006 |
Ejemplares similares
-
scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data
por: Qian, Kun, et al.
Publicado: (2022) -
Distribution Feedbox for the Superconducting Link (SCLink) and Magnets of HL-LHC
por: Bailey, W, et al.
Publicado: (2020) -
scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured
por: Sun, Tianyi, et al.
Publicado: (2021) -
Single-cell mapper (scMappR): using scRNA-seq to infer the cell-type specificities of differentially expressed genes
por: Sokolowski, Dustin J, et al.
Publicado: (2021) -
Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG
por: Duren, Zhana, et al.
Publicado: (2022)