Cargando…
Activity of putative orexin neurons during cataplexy
It is unclear why orexin-deficient animals, but not wild-type mice, show cataplexy. The current hypothesis predicts simultaneous excitation of cataplexy-inhibiting orexin neurons and cataplexy-inducing amygdala neurons. To test this hypothesis, we measured the activity of putative orexin neurons in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896372/ https://www.ncbi.nlm.nih.gov/pubmed/35246205 http://dx.doi.org/10.1186/s13041-022-00907-w |
Sumario: | It is unclear why orexin-deficient animals, but not wild-type mice, show cataplexy. The current hypothesis predicts simultaneous excitation of cataplexy-inhibiting orexin neurons and cataplexy-inducing amygdala neurons. To test this hypothesis, we measured the activity of putative orexin neurons in orexin-knockout mice during cataplexy episodes using fiber photometry. We created two animal models of orexin-knockout mice with a GCaMP6 fluorescent indicator expressed in putative orexin neurons. We first prepared orexin-knockout mice crossed with transgenic mice carrying a tetracycline-controlled transactivator transgene under the control of the orexin promoter. TetO-GCaMP6 was then introduced into mice via an adeno-associated virus injection or natural crossing. The resulting two models showed restricted expression of GCaMP6 in the hypothalamus, where orexin neurons should be located, and showed excitation to an intruder stress that was similar to that observed in orexin-intact mice in our previous study. The activity of these putative orexin neurons increased immediately before the onset of cataplexy-like behavior but decreased (approximately − 20% of the baseline) during the cataplexy-like episode. We propose that the activity of orexin neurons during cataplexy is moderately inhibited by an unknown mechanism. The absence of cataplexy in wild-type mice may be explained by basal or residual activity-induced orexin release, and emotional stimulus-induced counter activation of orexin neurons may not be necessary. This study will serve as a basis for better treatment of cataplexy in narcolepsy patients. |
---|