Cargando…

Challenges in translational machine learning

Machine learning (ML) algorithms are increasingly being used to help implement clinical decision support systems. In this new field, we define as “translational machine learning”, joint efforts and strong communication between data scientists and clinicians help to span the gap between ML and its ad...

Descripción completa

Detalles Bibliográficos
Autores principales: Couckuyt, Artuur, Seurinck, Ruth, Emmaneel, Annelies, Quintelier, Katrien, Novak, David, Van Gassen, Sofie, Saeys, Yvan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896412/
https://www.ncbi.nlm.nih.gov/pubmed/35246744
http://dx.doi.org/10.1007/s00439-022-02439-8
Descripción
Sumario:Machine learning (ML) algorithms are increasingly being used to help implement clinical decision support systems. In this new field, we define as “translational machine learning”, joint efforts and strong communication between data scientists and clinicians help to span the gap between ML and its adoption in the clinic. These collaborations also improve interpretability and trust in translational ML methods and ultimately aim to result in generalizable and reproducible models. To help clinicians and bioinformaticians refine their translational ML pipelines, we review the steps from model building to the use of ML in the clinic. We discuss experimental setup, computational analysis, interpretability and reproducibility, and emphasize the challenges involved. We highly advise collaboration and data sharing between consortia and institutes to build multi-centric cohorts that facilitate ML methodologies that generalize across centers. In the end, we hope that this review provides a way to streamline translational ML and helps to tackle the challenges that come with it.