Cargando…
Challenges in translational machine learning
Machine learning (ML) algorithms are increasingly being used to help implement clinical decision support systems. In this new field, we define as “translational machine learning”, joint efforts and strong communication between data scientists and clinicians help to span the gap between ML and its ad...
Autores principales: | Couckuyt, Artuur, Seurinck, Ruth, Emmaneel, Annelies, Quintelier, Katrien, Novak, David, Van Gassen, Sofie, Saeys, Yvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896412/ https://www.ncbi.nlm.nih.gov/pubmed/35246744 http://dx.doi.org/10.1007/s00439-022-02439-8 |
Ejemplares similares
-
PeacoQC: Peak‐based selection of high quality cytometry data
por: Emmaneel, Annelies, et al.
Publicado: (2021) -
Data processing workflow for large-scale immune monitoring studies by mass cytometry
por: Rybakowska, Paulina, et al.
Publicado: (2021) -
A Computational Pipeline for the Diagnosis of CVID Patients
por: Emmaneel, Annelies, et al.
Publicado: (2019) -
Protocol for large scale whole blood immune monitoring by mass cytometry and Cyto Quality Pipeline
por: Rybakowska, Paulina, et al.
Publicado: (2022) -
CytoNorm: A Normalization Algorithm for Cytometry Data
por: Van Gassen, Sofie, et al.
Publicado: (2019)