Cargando…
Domain-adaptive neural networks improve cross-species prediction of transcription factor binding
The intrinsic DNA sequence preferences and cell type–specific cooperative partners of transcription factors (TFs) are typically highly conserved. Hence, despite the rapid evolutionary turnover of individual TF binding sites, predictive sequence models of cell type–specific genomic occupancy of a TF...
Autores principales: | Cochran, Kelly, Srivastava, Divyanshi, Shrikumar, Avanti, Balsubramani, Akshay, Hardison, Ross C., Kundaje, Anshul, Mahony, Shaun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896468/ https://www.ncbi.nlm.nih.gov/pubmed/35042722 http://dx.doi.org/10.1101/gr.275394.121 |
Ejemplares similares
-
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
por: Shrikumar, Avanti, et al.
Publicado: (2019) -
An interpretable bimodal neural network characterizes the sequence and preexisting chromatin predictors of induced transcription factor binding
por: Srivastava, Divyanshi, et al.
Publicado: (2021) -
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
por: Movva, Rajiv, et al.
Publicado: (2019) -
Base-resolution models of transcription factor binding reveal soft motif syntax
por: Avsec, Žiga, et al.
Publicado: (2021) -
De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein-DNA binding
por: Alexandari, Amr M., et al.
Publicado: (2023)