Cargando…
Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images
MOTIVATION: Multiplexed imaging is a nascent single-cell assay with a complex data structure susceptible to technical variability that disrupts inference. These in situ methods are valuable in understanding cell–cell interactions, but few standardized processing steps or normalization techniques of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896603/ https://www.ncbi.nlm.nih.gov/pubmed/34983062 http://dx.doi.org/10.1093/bioinformatics/btab877 |
_version_ | 1784663199697600512 |
---|---|
author | Harris, Coleman R McKinley, Eliot T Roland, Joseph T Liu, Qi Shrubsole, Martha J Lau, Ken S Coffey, Robert J Wrobel, Julia Vandekar, Simon N |
author_facet | Harris, Coleman R McKinley, Eliot T Roland, Joseph T Liu, Qi Shrubsole, Martha J Lau, Ken S Coffey, Robert J Wrobel, Julia Vandekar, Simon N |
author_sort | Harris, Coleman R |
collection | PubMed |
description | MOTIVATION: Multiplexed imaging is a nascent single-cell assay with a complex data structure susceptible to technical variability that disrupts inference. These in situ methods are valuable in understanding cell–cell interactions, but few standardized processing steps or normalization techniques of multiplexed imaging data are available. RESULTS: We implement and compare data transformations and normalization algorithms in multiplexed imaging data. Our methods adapt the ComBat and functional data registration methods to remove slide effects in this domain, and we present an evaluation framework to compare the proposed approaches. We present clear slide-to-slide variation in the raw, unadjusted data and show that many of the proposed normalization methods reduce this variation while preserving and improving the biological signal. Furthermore, we find that dividing multiplexed imaging data by its slide mean, and the functional data registration methods, perform the best under our proposed evaluation framework. In summary, this approach provides a foundation for better data quality and evaluation criteria in multiplexed imaging. AVAILABILITY AND IMPLEMENTATION: Source code is provided at: https://github.com/statimagcoll/MultiplexedNormalization and an R package to implement these methods is available here: https://github.com/ColemanRHarris/mxnorm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-8896603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88966032022-03-07 Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images Harris, Coleman R McKinley, Eliot T Roland, Joseph T Liu, Qi Shrubsole, Martha J Lau, Ken S Coffey, Robert J Wrobel, Julia Vandekar, Simon N Bioinformatics Original Papers MOTIVATION: Multiplexed imaging is a nascent single-cell assay with a complex data structure susceptible to technical variability that disrupts inference. These in situ methods are valuable in understanding cell–cell interactions, but few standardized processing steps or normalization techniques of multiplexed imaging data are available. RESULTS: We implement and compare data transformations and normalization algorithms in multiplexed imaging data. Our methods adapt the ComBat and functional data registration methods to remove slide effects in this domain, and we present an evaluation framework to compare the proposed approaches. We present clear slide-to-slide variation in the raw, unadjusted data and show that many of the proposed normalization methods reduce this variation while preserving and improving the biological signal. Furthermore, we find that dividing multiplexed imaging data by its slide mean, and the functional data registration methods, perform the best under our proposed evaluation framework. In summary, this approach provides a foundation for better data quality and evaluation criteria in multiplexed imaging. AVAILABILITY AND IMPLEMENTATION: Source code is provided at: https://github.com/statimagcoll/MultiplexedNormalization and an R package to implement these methods is available here: https://github.com/ColemanRHarris/mxnorm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-01-04 /pmc/articles/PMC8896603/ /pubmed/34983062 http://dx.doi.org/10.1093/bioinformatics/btab877 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Harris, Coleman R McKinley, Eliot T Roland, Joseph T Liu, Qi Shrubsole, Martha J Lau, Ken S Coffey, Robert J Wrobel, Julia Vandekar, Simon N Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
title | Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
title_full | Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
title_fullStr | Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
title_full_unstemmed | Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
title_short | Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
title_sort | quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896603/ https://www.ncbi.nlm.nih.gov/pubmed/34983062 http://dx.doi.org/10.1093/bioinformatics/btab877 |
work_keys_str_mv | AT harriscolemanr quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT mckinleyeliott quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT rolandjosepht quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT liuqi quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT shrubsolemarthaj quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT laukens quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT coffeyrobertj quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT wrobeljulia quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages AT vandekarsimonn quantifyingandcorrectingslidetoslidevariationinmultiplexedimmunofluorescenceimages |