Cargando…

Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation

MOTIVATION: Record Linkage has versatile applications in real-world data analysis contexts, where several datasets need to be linked on the record level in the absence of any exact identifier connecting related records. An example are medical databases of patients, spread across institutions, that h...

Descripción completa

Detalles Bibliográficos
Autores principales: Stammler, Sebastian, Kussel, Tobias, Schoppmann, Phillipp, Stampe, Florian, Tremper, Galina, Katzenbeisser, Stefan, Hamacher, Kay, Lablans, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896632/
https://www.ncbi.nlm.nih.gov/pubmed/32871006
http://dx.doi.org/10.1093/bioinformatics/btaa764
_version_ 1784663203792289792
author Stammler, Sebastian
Kussel, Tobias
Schoppmann, Phillipp
Stampe, Florian
Tremper, Galina
Katzenbeisser, Stefan
Hamacher, Kay
Lablans, Martin
author_facet Stammler, Sebastian
Kussel, Tobias
Schoppmann, Phillipp
Stampe, Florian
Tremper, Galina
Katzenbeisser, Stefan
Hamacher, Kay
Lablans, Martin
author_sort Stammler, Sebastian
collection PubMed
description MOTIVATION: Record Linkage has versatile applications in real-world data analysis contexts, where several datasets need to be linked on the record level in the absence of any exact identifier connecting related records. An example are medical databases of patients, spread across institutions, that have to be linked on personally identifiable entries like name, date of birth or ZIP code. At the same time, privacy laws may prohibit the exchange of this personally identifiable information (PII) across institutional boundaries, ruling out the outsourcing of the record linkage task to a trusted third party. We propose to employ privacy-preserving record linkage (PPRL) techniques that prevent, to various degrees, the leakage of PII while still allowing for the linkage of related records. RESULTS: We develop a framework for fault-tolerant PPRL using secure multi-party computation with the medical record keeping software Mainzelliste as the data source. Our solution does not rely on any trusted third party and all PII is guaranteed to not leak under common cryptographic security assumptions. Benchmarks show the feasibility of our approach in realistic networking settings: linkage of a patient record against a database of 10 000 records can be done in 48 s over a heavily delayed (100 ms) network connection, or 3.9 s with a low-latency connection. AVAILABILITY AND IMPLEMENTATION: The source code of the sMPC node is freely available on Github at https://github.com/medicalinformatics/SecureEpilinker subject to the AGPLv3 license. The source code of the modified Mainzelliste is available at https://github.com/medicalinformatics/MainzellisteSEL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-8896632
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-88966322022-03-07 Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation Stammler, Sebastian Kussel, Tobias Schoppmann, Phillipp Stampe, Florian Tremper, Galina Katzenbeisser, Stefan Hamacher, Kay Lablans, Martin Bioinformatics Original Papers MOTIVATION: Record Linkage has versatile applications in real-world data analysis contexts, where several datasets need to be linked on the record level in the absence of any exact identifier connecting related records. An example are medical databases of patients, spread across institutions, that have to be linked on personally identifiable entries like name, date of birth or ZIP code. At the same time, privacy laws may prohibit the exchange of this personally identifiable information (PII) across institutional boundaries, ruling out the outsourcing of the record linkage task to a trusted third party. We propose to employ privacy-preserving record linkage (PPRL) techniques that prevent, to various degrees, the leakage of PII while still allowing for the linkage of related records. RESULTS: We develop a framework for fault-tolerant PPRL using secure multi-party computation with the medical record keeping software Mainzelliste as the data source. Our solution does not rely on any trusted third party and all PII is guaranteed to not leak under common cryptographic security assumptions. Benchmarks show the feasibility of our approach in realistic networking settings: linkage of a patient record against a database of 10 000 records can be done in 48 s over a heavily delayed (100 ms) network connection, or 3.9 s with a low-latency connection. AVAILABILITY AND IMPLEMENTATION: The source code of the sMPC node is freely available on Github at https://github.com/medicalinformatics/SecureEpilinker subject to the AGPLv3 license. The source code of the modified Mainzelliste is available at https://github.com/medicalinformatics/MainzellisteSEL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-09-01 /pmc/articles/PMC8896632/ /pubmed/32871006 http://dx.doi.org/10.1093/bioinformatics/btaa764 Text en © The Author(s) 2020. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Stammler, Sebastian
Kussel, Tobias
Schoppmann, Phillipp
Stampe, Florian
Tremper, Galina
Katzenbeisser, Stefan
Hamacher, Kay
Lablans, Martin
Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
title Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
title_full Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
title_fullStr Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
title_full_unstemmed Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
title_short Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
title_sort mainzelliste secureepilinker (mainsel): privacy-preserving record linkage using secure multi-party computation
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896632/
https://www.ncbi.nlm.nih.gov/pubmed/32871006
http://dx.doi.org/10.1093/bioinformatics/btaa764
work_keys_str_mv AT stammlersebastian mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT kusseltobias mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT schoppmannphillipp mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT stampeflorian mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT trempergalina mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT katzenbeisserstefan mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT hamacherkay mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation
AT lablansmartin mainzellistesecureepilinkermainselprivacypreservingrecordlinkageusingsecuremultipartycomputation