Cargando…
CACONET: a novel classification framework for microbial correlation networks
MOTIVATION: Existing microbiome-based disease prediction relies on the ability of machine learning methods to differentiate disease from healthy subjects based on the observed taxa abundance across samples. Despite numerous microbes have been implicated as potential biomarkers, challenges remain due...
Autores principales: | Xu, Yuanwei, Nash, Katrina, Acharjee, Animesh, Gkoutos, Georgios V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896646/ https://www.ncbi.nlm.nih.gov/pubmed/34983063 http://dx.doi.org/10.1093/bioinformatics/btab879 |
Ejemplares similares
-
Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer
por: Bisht, Vartika, et al.
Publicado: (2021) -
A random forest based biomarker discovery and power analysis framework for diagnostics research
por: Acharjee, Animesh, et al.
Publicado: (2020) -
Machine Learning-Based Identification of Colon Cancer Candidate Diagnostics Genes
por: Koppad, Saraswati, et al.
Publicado: (2022) -
NFnetFu: A novel workflow for microbiome data fusion
por: Bisht, Vartika, et al.
Publicado: (2021) -
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET
por: Aadil, Farhan, et al.
Publicado: (2016)