Cargando…
Inference in epidemiological agent-based models using ensemble-based data assimilation
To represent the complex individual interactions in the dynamics of disease spread informed by data, the coupling of an epidemiological agent-based model with the ensemble Kalman filter is proposed. The statistical inference of the propagation of a disease by means of ensemble-based data assimilatio...
Autores principales: | Cocucci, Tadeo Javier, Pulido, Manuel, Aparicio, Juan Pablo, Ruíz, Juan, Simoy, Mario Ignacio, Rosa, Santiago |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896713/ https://www.ncbi.nlm.nih.gov/pubmed/35245337 http://dx.doi.org/10.1371/journal.pone.0264892 |
Ejemplares similares
-
Socially structured model for COVID-19 pandemic: design and evaluation of control measures
por: Simoy, Mario Ignacio, et al.
Publicado: (2021) -
An approach to localization for ensemble-based data assimilation
por: Wang, Bin, et al.
Publicado: (2018) -
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
A Maximum Likelihood Ensemble Filter via a Modified Cholesky Decomposition for Non-Gaussian Data Assimilation
por: Nino-Ruiz, Elias David, et al.
Publicado: (2020) -
Ensemble-based kernel learning for a class of data assimilation problems with imperfect forward simulators
por: Luo, Xiaodong
Publicado: (2019)