Cargando…
Analyzing genderless fashion trends of consumers’ perceptions on social media: using unstructured big data analysis through Latent Dirichlet Allocation-based topic modeling
After the development of Web 2.0 and social networks, analyzing consumers’ responses and opinions in real-time became profoundly important to gain business insights. This study aims to identify consumers’ preferences and perceptions of genderless fashion trends by text-mining, Latent Dirichlet Alloc...
Autores principales: | Kim, Hyojung, Cho, Inho, Park, Minjung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896911/ http://dx.doi.org/10.1186/s40691-021-00281-6 |
Ejemplares similares
-
Public perceptions of digital fashion: An analysis of sentiment and Latent Dirichlet Allocation topic modeling
por: Zou, Yixin, et al.
Publicado: (2022) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method
por: Chiu, Chih-Chou, et al.
Publicado: (2023) -
A Topic Modeling for ALICE'S Log Messages using Latent Dirichlet Allocation
por: Prayurahong, Pattapon, et al.
Publicado: (2022) -
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023)