Cargando…
Identification and Prediction of Chronic Diseases Using Machine Learning Approach
Nowadays, humans face various diseases due to the current environmental condition and their living habits. The identification and prediction of such diseases at their earlier stages are much important, so as to prevent the extremity of it. It is difficult for doctors to manually identify the disease...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896926/ https://www.ncbi.nlm.nih.gov/pubmed/35251563 http://dx.doi.org/10.1155/2022/2826127 |
_version_ | 1784663281258987520 |
---|---|
author | Alanazi, Rayan |
author_facet | Alanazi, Rayan |
author_sort | Alanazi, Rayan |
collection | PubMed |
description | Nowadays, humans face various diseases due to the current environmental condition and their living habits. The identification and prediction of such diseases at their earlier stages are much important, so as to prevent the extremity of it. It is difficult for doctors to manually identify the diseases accurately most of the time. The goal of this paper is to identify and predict the patients with more common chronic illnesses. This could be achieved by using a cutting-edge machine learning technique to ensure that this categorization reliably identifies persons with chronic diseases. The prediction of diseases is also a challenging task. Hence, data mining plays a critical role in disease prediction. The proposed system offers a broad disease prognosis based on patient's symptoms by using the machine learning algorithms such as convolutional neural network (CNN) for automatic feature extraction and disease prediction and K-nearest neighbor (KNN) for distance calculation to find the exact match in the data set and the final disease prediction outcome. A collection of disease symptoms has been performed for the preparation of the data set along with the person's living habits, and details related to doctor consultations are taken into account in this general disease prediction. Finally, a comparative study of the proposed system with various algorithms such as Naïve Bayes, decision tree, and logistic regression has been demonstrated in this paper. |
format | Online Article Text |
id | pubmed-8896926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-88969262022-03-05 Identification and Prediction of Chronic Diseases Using Machine Learning Approach Alanazi, Rayan J Healthc Eng Research Article Nowadays, humans face various diseases due to the current environmental condition and their living habits. The identification and prediction of such diseases at their earlier stages are much important, so as to prevent the extremity of it. It is difficult for doctors to manually identify the diseases accurately most of the time. The goal of this paper is to identify and predict the patients with more common chronic illnesses. This could be achieved by using a cutting-edge machine learning technique to ensure that this categorization reliably identifies persons with chronic diseases. The prediction of diseases is also a challenging task. Hence, data mining plays a critical role in disease prediction. The proposed system offers a broad disease prognosis based on patient's symptoms by using the machine learning algorithms such as convolutional neural network (CNN) for automatic feature extraction and disease prediction and K-nearest neighbor (KNN) for distance calculation to find the exact match in the data set and the final disease prediction outcome. A collection of disease symptoms has been performed for the preparation of the data set along with the person's living habits, and details related to doctor consultations are taken into account in this general disease prediction. Finally, a comparative study of the proposed system with various algorithms such as Naïve Bayes, decision tree, and logistic regression has been demonstrated in this paper. Hindawi 2022-02-25 /pmc/articles/PMC8896926/ /pubmed/35251563 http://dx.doi.org/10.1155/2022/2826127 Text en Copyright © 2022 Rayan Alanazi. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Alanazi, Rayan Identification and Prediction of Chronic Diseases Using Machine Learning Approach |
title | Identification and Prediction of Chronic Diseases Using Machine Learning Approach |
title_full | Identification and Prediction of Chronic Diseases Using Machine Learning Approach |
title_fullStr | Identification and Prediction of Chronic Diseases Using Machine Learning Approach |
title_full_unstemmed | Identification and Prediction of Chronic Diseases Using Machine Learning Approach |
title_short | Identification and Prediction of Chronic Diseases Using Machine Learning Approach |
title_sort | identification and prediction of chronic diseases using machine learning approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896926/ https://www.ncbi.nlm.nih.gov/pubmed/35251563 http://dx.doi.org/10.1155/2022/2826127 |
work_keys_str_mv | AT alanazirayan identificationandpredictionofchronicdiseasesusingmachinelearningapproach |