Cargando…
Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic
Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897313/ https://www.ncbi.nlm.nih.gov/pubmed/35261777 http://dx.doi.org/10.1093/nsr/nwab186 |
Sumario: | Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mimic NOX. The Co/C can catalyze dehydrogenation of NADH and transfers electrons to O(2) to produce H(2)O(2). Density functional theory calculations reveal that the Co/C can catalyze O(2) reduction to H(2)O(2) or H(2)O considerably. The Co/C can also mediate electron transfer from NADH to heme protein cytochrome c, thereby exhibiting cytochrome c reductase-like activity. The Co/C nanoparticles can deplete NADH in cancer cells, induce increase of the reactive oxygen species, lead to impairment of oxidative phosphorylation and decrease in mitochondrial membrane potential, and cause ATP production to be damaged. This ‘domino effect’ facilitates the cell to approach apoptosis. |
---|