Cargando…

Assessing patent ductus arteriosus in preterm infants from standard neonatal intensive care monitoring

Monitoring patent ductus arteriosus (PDA) in premature infants is currently performed intermittently using echocardiography which requires considerable expertise. The aim of this pilot study was to investigate whether PDA status could be assessed from standard neonatal intensive care monitoring. Ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Kotidis, Charalampos, Wertheim, David, Weindling, Michael, Rabe, Heike, Turner, Mark A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897357/
https://www.ncbi.nlm.nih.gov/pubmed/34748081
http://dx.doi.org/10.1007/s00431-021-04311-9
Descripción
Sumario:Monitoring patent ductus arteriosus (PDA) in premature infants is currently performed intermittently using echocardiography which requires considerable expertise. The aim of this pilot study was to investigate whether PDA status could be assessed from standard neonatal intensive care monitoring. Electrocardiography (ECG) and blood pressure (BP) waveforms were acquired from extremely preterm infants using standard neonatal monitors. We developed software using MATLAB to analyse ECG and BP waveforms and their interrelationships in terms of pulse transit time (PTT) and pulse wave velocity (PWV). The times from peak systolic BP to diastolic trough (BPFt) and from the diastolic trough to peak systolic BP (BPRt) were also calculated. PTT, BPFt and BPRt were normalised for heart rate (HR) termed NPTT, NBPFt and NBPRt, respectively. ECG, invasive aortic BP monitoring and echocardiography were performed in 14 preterm infants < 29 weeks’ gestation in the first 3 days after birth. The median (range) birth weight of the infants was 0.90 (0.48–1.31) kg, gestation 26.6 (24.0–28.7) weeks, PDA diameter 1.6 (0.8–3.6) mm and mean BP 32 (16–40) mmHg. We found a significant positive correlation between PDA diameter and NPTT (r = 0.69, P = 0.007) as well as NBPFt (r = 0.65, P = 0.012) and NBPRt (r = 0.71, P = 0.005). No relationship was found between PDA diameter and pulse pressure. Conclusions: Interrelationships between ECG and BP traces as well as BP waveform time analysis are straightforward to measure and associated with PDA diameter. The results of this pilot study suggest that this approach may help provide biomarkers for continuous monitoring PDA diameter and function. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00431-021-04311-9.