Cargando…
Active label cleaning for improved dataset quality under resource constraints
Imperfections in data annotation, known as label noise, are detrimental to the training of machine learning models and have a confounding effect on the assessment of model performance. Nevertheless, employing experts to remove label noise by fully re-annotating large datasets is infeasible in resour...
Autores principales: | Bernhardt, Mélanie, Castro, Daniel C., Tanno, Ryutaro, Schwaighofer, Anton, Tezcan, Kerem C., Monteiro, Miguel, Bannur, Shruthi, Lungren, Matthew P., Nori, Aditya, Glocker, Ben, Alvarez-Valle, Javier, Oktay, Ozan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897392/ https://www.ncbi.nlm.nih.gov/pubmed/35246539 http://dx.doi.org/10.1038/s41467-022-28818-3 |
Ejemplares similares
-
Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers
por: Oktay, Ozan, et al.
Publicado: (2020) -
To clean or not to clean phenotypic datasets for outlier plants in genetic analyses?
por: Alvarez Prado, Santiago, et al.
Publicado: (2019) -
Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images
por: Schlemper, Jo, et al.
Publicado: (2019) -
A globally synthesised and flagged bee occurrence dataset and cleaning workflow
por: Dorey, James B., et al.
Publicado: (2023) -
Clean Label in Bread
por: Vargas, Maite Cristina Alava, et al.
Publicado: (2021)