Cargando…
Non-local correlation dynamics in two-dimensional graphene
We explore the non-local correlation dynamics in a Graphene sheet of disordered electrons in a two-dimensional honeycomb lattice, containing two sublattices, induced by the interaction range of impurity potentials of two Dirac points. The Bell function, uncertainty-induced non-locality, and concurre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897455/ https://www.ncbi.nlm.nih.gov/pubmed/35246543 http://dx.doi.org/10.1038/s41598-022-07204-5 |
Sumario: | We explore the non-local correlation dynamics in a Graphene sheet of disordered electrons in a two-dimensional honeycomb lattice, containing two sublattices, induced by the interaction range of impurity potentials of two Dirac points. The Bell function, uncertainty-induced non-locality, and concurrence are used to investigate the formation and robustness of the non-local correlation between the honeycomb lattice and the Dirac point. The generated lattice-point non-local correlations are explored when the lattice-point system is initially in the uncorrelated state. Due to the lattice-point interaction, the resulting Bell-function non-locality and entanglement concurrence satisfy the hierarchy principle. The generated uncertainty-induced non-locality correlation has a higher degree of stability and robustness than the Bell non-locality and concurrence. We analyze the robustness of the initial maximal non-local correlations under the effects of the band parameter, the intravalley scattering processes, the wave numbers, and the intrinsic decoherence. The formation and stability of lattice-point correlations are highly dependent on the honeycomb lattice and Dirac point characteristics. |
---|