Cargando…

Change and variability in Antarctic coastal exposure, 1979–2020

Increased exposure of Antarctica’s coastal environment to open ocean and waves due to loss of a protective sea-ice “buffer” has important ramifications for ice-shelf stability, coastal erosion, important ice-ocean-atmosphere interactions and shallow benthic ecosystems. Here, we introduce a climate a...

Descripción completa

Detalles Bibliográficos
Autores principales: Reid, P. A., Massom, R. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897499/
https://www.ncbi.nlm.nih.gov/pubmed/35246526
http://dx.doi.org/10.1038/s41467-022-28676-z
Descripción
Sumario:Increased exposure of Antarctica’s coastal environment to open ocean and waves due to loss of a protective sea-ice “buffer” has important ramifications for ice-shelf stability, coastal erosion, important ice-ocean-atmosphere interactions and shallow benthic ecosystems. Here, we introduce a climate and environmental metric based on the ongoing long-term satellite sea-ice concentration record, namely Coastal Exposure Length. This is a daily measure of change and variability in the length and incidence of Antarctic coastline lacking any protective sea-ice buffer offshore. For 1979–2020, ~50% of Antarctica’s ~17,850-km coastline had no sea ice offshore each summer, with minimal exposure in winter. Regional summer/maximum contributions vary from 45% (Amundsen-Bellingshausen seas) to 58% (Indian Ocean and Ross Sea), with circumpolar annual exposure ranging from 38% (2019) to 63% (1993). The annual maximum length of Antarctic coastal exposure decreased by ~30 km (~0.32%) per year for 1979–2020, composed of distinct regional and seasonal contributions.