Cargando…

A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models

BACKGROUND: Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine learning demonstrates promise in accurate outcome prediction for a variet...

Descripción completa

Detalles Bibliográficos
Autores principales: Hindocha, Sumeet, Charlton, Thomas G., Linton-Reid, Kristofer, Hunter, Benjamin, Chan, Charleen, Ahmed, Merina, Robinson, Emily J., Orton, Matthew, Ahmad, Shahreen, McDonald, Fiona, Locke, Imogen, Power, Danielle, Blackledge, Matthew, Lee, Richard W., Aboagye, Eric O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897583/
https://www.ncbi.nlm.nih.gov/pubmed/35248997
http://dx.doi.org/10.1016/j.ebiom.2022.103911
_version_ 1784663449370886144
author Hindocha, Sumeet
Charlton, Thomas G.
Linton-Reid, Kristofer
Hunter, Benjamin
Chan, Charleen
Ahmed, Merina
Robinson, Emily J.
Orton, Matthew
Ahmad, Shahreen
McDonald, Fiona
Locke, Imogen
Power, Danielle
Blackledge, Matthew
Lee, Richard W.
Aboagye, Eric O.
author_facet Hindocha, Sumeet
Charlton, Thomas G.
Linton-Reid, Kristofer
Hunter, Benjamin
Chan, Charleen
Ahmed, Merina
Robinson, Emily J.
Orton, Matthew
Ahmad, Shahreen
McDonald, Fiona
Locke, Imogen
Power, Danielle
Blackledge, Matthew
Lee, Richard W.
Aboagye, Eric O.
author_sort Hindocha, Sumeet
collection PubMed
description BACKGROUND: Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine learning demonstrates promise in accurate outcome prediction for a variety of health conditions. The purpose of this study was to utilise readily available patient, tumour, and treatment data to develop, validate and externally test machine learning models for predicting recurrence, recurrence-free survival (RFS) and overall survival (OS) at 2 years from treatment. METHODS: A retrospective, multicentre study of patients receiving curative-intent radiotherapy for NSCLC was undertaken. A total of 657 patients from 5 hospitals were eligible for inclusion. Data pre-processing derived 34 features for predictive modelling. Combinations of 8 feature reduction methods and 10 machine learning classification algorithms were compared, producing risk-stratification models for predicting recurrence, RFS and OS. Models were compared with 10-fold cross validation and an external test set and benchmarked against TNM-stage and performance status. Youden Index was derived from validation set ROC curves to distinguish high and low risk groups and Kaplan-Meier analyses performed. FINDINGS: Median follow-up time was 852 days. Parameters were well matched across training-validation and external test sets: Mean age was 73 and 71 respectively, and recurrence, RFS and OS rates at 2 years were 43% vs 34%, 54% vs 47% and 54% vs 47% respectively. The respective validation and test set AUCs were as follows: 1) RFS: 0·682 (0·575–0·788) and 0·681 (0·597–0·766), 2) Recurrence: 0·687 (0·582–0·793) and 0·722 (0·635–0·81), and 3) OS: 0·759 (0·663–0·855) and 0·717 (0·634–0·8). Our models were superior to TNM stage and performance status in predicting recurrence and OS. INTERPRETATION: This robust and ready to use machine learning method, validated and externally tested, sets the stage for future clinical trials entailing quantitative personalised risk-stratification and surveillance following curative-intent radiotherapy for NSCLC. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
format Online
Article
Text
id pubmed-8897583
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88975832022-03-06 A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models Hindocha, Sumeet Charlton, Thomas G. Linton-Reid, Kristofer Hunter, Benjamin Chan, Charleen Ahmed, Merina Robinson, Emily J. Orton, Matthew Ahmad, Shahreen McDonald, Fiona Locke, Imogen Power, Danielle Blackledge, Matthew Lee, Richard W. Aboagye, Eric O. EBioMedicine Articles BACKGROUND: Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine learning demonstrates promise in accurate outcome prediction for a variety of health conditions. The purpose of this study was to utilise readily available patient, tumour, and treatment data to develop, validate and externally test machine learning models for predicting recurrence, recurrence-free survival (RFS) and overall survival (OS) at 2 years from treatment. METHODS: A retrospective, multicentre study of patients receiving curative-intent radiotherapy for NSCLC was undertaken. A total of 657 patients from 5 hospitals were eligible for inclusion. Data pre-processing derived 34 features for predictive modelling. Combinations of 8 feature reduction methods and 10 machine learning classification algorithms were compared, producing risk-stratification models for predicting recurrence, RFS and OS. Models were compared with 10-fold cross validation and an external test set and benchmarked against TNM-stage and performance status. Youden Index was derived from validation set ROC curves to distinguish high and low risk groups and Kaplan-Meier analyses performed. FINDINGS: Median follow-up time was 852 days. Parameters were well matched across training-validation and external test sets: Mean age was 73 and 71 respectively, and recurrence, RFS and OS rates at 2 years were 43% vs 34%, 54% vs 47% and 54% vs 47% respectively. The respective validation and test set AUCs were as follows: 1) RFS: 0·682 (0·575–0·788) and 0·681 (0·597–0·766), 2) Recurrence: 0·687 (0·582–0·793) and 0·722 (0·635–0·81), and 3) OS: 0·759 (0·663–0·855) and 0·717 (0·634–0·8). Our models were superior to TNM stage and performance status in predicting recurrence and OS. INTERPRETATION: This robust and ready to use machine learning method, validated and externally tested, sets the stage for future clinical trials entailing quantitative personalised risk-stratification and surveillance following curative-intent radiotherapy for NSCLC. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. Elsevier 2022-03-03 /pmc/articles/PMC8897583/ /pubmed/35248997 http://dx.doi.org/10.1016/j.ebiom.2022.103911 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Articles
Hindocha, Sumeet
Charlton, Thomas G.
Linton-Reid, Kristofer
Hunter, Benjamin
Chan, Charleen
Ahmed, Merina
Robinson, Emily J.
Orton, Matthew
Ahmad, Shahreen
McDonald, Fiona
Locke, Imogen
Power, Danielle
Blackledge, Matthew
Lee, Richard W.
Aboagye, Eric O.
A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
title A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
title_full A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
title_fullStr A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
title_full_unstemmed A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
title_short A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
title_sort comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: development and validation of multivariable clinical prediction models
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897583/
https://www.ncbi.nlm.nih.gov/pubmed/35248997
http://dx.doi.org/10.1016/j.ebiom.2022.103911
work_keys_str_mv AT hindochasumeet acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT charltonthomasg acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT lintonreidkristofer acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT hunterbenjamin acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT chancharleen acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT ahmedmerina acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT robinsonemilyj acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT ortonmatthew acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT ahmadshahreen acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT mcdonaldfiona acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT lockeimogen acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT powerdanielle acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT blackledgematthew acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT leerichardw acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT aboagyeerico acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT hindochasumeet comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT charltonthomasg comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT lintonreidkristofer comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT hunterbenjamin comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT chancharleen comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT ahmedmerina comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT robinsonemilyj comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT ortonmatthew comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT ahmadshahreen comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT mcdonaldfiona comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT lockeimogen comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT powerdanielle comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT blackledgematthew comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT leerichardw comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels
AT aboagyeerico comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels