Cargando…
A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models
BACKGROUND: Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine learning demonstrates promise in accurate outcome prediction for a variet...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897583/ https://www.ncbi.nlm.nih.gov/pubmed/35248997 http://dx.doi.org/10.1016/j.ebiom.2022.103911 |
_version_ | 1784663449370886144 |
---|---|
author | Hindocha, Sumeet Charlton, Thomas G. Linton-Reid, Kristofer Hunter, Benjamin Chan, Charleen Ahmed, Merina Robinson, Emily J. Orton, Matthew Ahmad, Shahreen McDonald, Fiona Locke, Imogen Power, Danielle Blackledge, Matthew Lee, Richard W. Aboagye, Eric O. |
author_facet | Hindocha, Sumeet Charlton, Thomas G. Linton-Reid, Kristofer Hunter, Benjamin Chan, Charleen Ahmed, Merina Robinson, Emily J. Orton, Matthew Ahmad, Shahreen McDonald, Fiona Locke, Imogen Power, Danielle Blackledge, Matthew Lee, Richard W. Aboagye, Eric O. |
author_sort | Hindocha, Sumeet |
collection | PubMed |
description | BACKGROUND: Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine learning demonstrates promise in accurate outcome prediction for a variety of health conditions. The purpose of this study was to utilise readily available patient, tumour, and treatment data to develop, validate and externally test machine learning models for predicting recurrence, recurrence-free survival (RFS) and overall survival (OS) at 2 years from treatment. METHODS: A retrospective, multicentre study of patients receiving curative-intent radiotherapy for NSCLC was undertaken. A total of 657 patients from 5 hospitals were eligible for inclusion. Data pre-processing derived 34 features for predictive modelling. Combinations of 8 feature reduction methods and 10 machine learning classification algorithms were compared, producing risk-stratification models for predicting recurrence, RFS and OS. Models were compared with 10-fold cross validation and an external test set and benchmarked against TNM-stage and performance status. Youden Index was derived from validation set ROC curves to distinguish high and low risk groups and Kaplan-Meier analyses performed. FINDINGS: Median follow-up time was 852 days. Parameters were well matched across training-validation and external test sets: Mean age was 73 and 71 respectively, and recurrence, RFS and OS rates at 2 years were 43% vs 34%, 54% vs 47% and 54% vs 47% respectively. The respective validation and test set AUCs were as follows: 1) RFS: 0·682 (0·575–0·788) and 0·681 (0·597–0·766), 2) Recurrence: 0·687 (0·582–0·793) and 0·722 (0·635–0·81), and 3) OS: 0·759 (0·663–0·855) and 0·717 (0·634–0·8). Our models were superior to TNM stage and performance status in predicting recurrence and OS. INTERPRETATION: This robust and ready to use machine learning method, validated and externally tested, sets the stage for future clinical trials entailing quantitative personalised risk-stratification and surveillance following curative-intent radiotherapy for NSCLC. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. |
format | Online Article Text |
id | pubmed-8897583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88975832022-03-06 A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models Hindocha, Sumeet Charlton, Thomas G. Linton-Reid, Kristofer Hunter, Benjamin Chan, Charleen Ahmed, Merina Robinson, Emily J. Orton, Matthew Ahmad, Shahreen McDonald, Fiona Locke, Imogen Power, Danielle Blackledge, Matthew Lee, Richard W. Aboagye, Eric O. EBioMedicine Articles BACKGROUND: Surveillance is universally recommended for non-small cell lung cancer (NSCLC) patients treated with curative-intent radiotherapy. High-quality evidence to inform optimal surveillance strategies is lacking. Machine learning demonstrates promise in accurate outcome prediction for a variety of health conditions. The purpose of this study was to utilise readily available patient, tumour, and treatment data to develop, validate and externally test machine learning models for predicting recurrence, recurrence-free survival (RFS) and overall survival (OS) at 2 years from treatment. METHODS: A retrospective, multicentre study of patients receiving curative-intent radiotherapy for NSCLC was undertaken. A total of 657 patients from 5 hospitals were eligible for inclusion. Data pre-processing derived 34 features for predictive modelling. Combinations of 8 feature reduction methods and 10 machine learning classification algorithms were compared, producing risk-stratification models for predicting recurrence, RFS and OS. Models were compared with 10-fold cross validation and an external test set and benchmarked against TNM-stage and performance status. Youden Index was derived from validation set ROC curves to distinguish high and low risk groups and Kaplan-Meier analyses performed. FINDINGS: Median follow-up time was 852 days. Parameters were well matched across training-validation and external test sets: Mean age was 73 and 71 respectively, and recurrence, RFS and OS rates at 2 years were 43% vs 34%, 54% vs 47% and 54% vs 47% respectively. The respective validation and test set AUCs were as follows: 1) RFS: 0·682 (0·575–0·788) and 0·681 (0·597–0·766), 2) Recurrence: 0·687 (0·582–0·793) and 0·722 (0·635–0·81), and 3) OS: 0·759 (0·663–0·855) and 0·717 (0·634–0·8). Our models were superior to TNM stage and performance status in predicting recurrence and OS. INTERPRETATION: This robust and ready to use machine learning method, validated and externally tested, sets the stage for future clinical trials entailing quantitative personalised risk-stratification and surveillance following curative-intent radiotherapy for NSCLC. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. Elsevier 2022-03-03 /pmc/articles/PMC8897583/ /pubmed/35248997 http://dx.doi.org/10.1016/j.ebiom.2022.103911 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Hindocha, Sumeet Charlton, Thomas G. Linton-Reid, Kristofer Hunter, Benjamin Chan, Charleen Ahmed, Merina Robinson, Emily J. Orton, Matthew Ahmad, Shahreen McDonald, Fiona Locke, Imogen Power, Danielle Blackledge, Matthew Lee, Richard W. Aboagye, Eric O. A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models |
title | A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models |
title_full | A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models |
title_fullStr | A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models |
title_full_unstemmed | A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models |
title_short | A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models |
title_sort | comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: development and validation of multivariable clinical prediction models |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897583/ https://www.ncbi.nlm.nih.gov/pubmed/35248997 http://dx.doi.org/10.1016/j.ebiom.2022.103911 |
work_keys_str_mv | AT hindochasumeet acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT charltonthomasg acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT lintonreidkristofer acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT hunterbenjamin acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT chancharleen acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT ahmedmerina acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT robinsonemilyj acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT ortonmatthew acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT ahmadshahreen acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT mcdonaldfiona acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT lockeimogen acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT powerdanielle acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT blackledgematthew acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT leerichardw acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT aboagyeerico acomparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT hindochasumeet comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT charltonthomasg comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT lintonreidkristofer comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT hunterbenjamin comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT chancharleen comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT ahmedmerina comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT robinsonemilyj comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT ortonmatthew comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT ahmadshahreen comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT mcdonaldfiona comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT lockeimogen comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT powerdanielle comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT blackledgematthew comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT leerichardw comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels AT aboagyeerico comparisonofmachinelearningmethodsforpredictingrecurrenceanddeathaftercurativeintentradiotherapyfornonsmallcelllungcancerdevelopmentandvalidationofmultivariableclinicalpredictionmodels |