Cargando…
PEPPI: Whole-proteome Protein-protein Interaction Prediction through Structure and Sequence Similarity, Functional Association, and Machine Learning
Proteome-wide identification of protein-protein interactions is a formidable task which has yet to be sufficiently addressed by experimental methodologies. Many computational methods have been developed to predict proteome-wide interaction networks, but few leverage both the sensitivity of structura...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897833/ https://www.ncbi.nlm.nih.gov/pubmed/35662463 http://dx.doi.org/10.1016/j.jmb.2022.167530 |
Sumario: | Proteome-wide identification of protein-protein interactions is a formidable task which has yet to be sufficiently addressed by experimental methodologies. Many computational methods have been developed to predict proteome-wide interaction networks, but few leverage both the sensitivity of structural information and the wide availability of sequence data. We present PEPPI, a pipeline which integrates structural similarity, sequence similarity, functional association data, and machine learning-based classification through a naïve Bayesian classifier model to accurately predict protein-protein interactions at a proteomic scale. Through benchmarking against a set of 798 ground truth interactions and an equal number of non-interactions, we have found that PEPPI attains 4.5% higher AUROC than the best of other state-of-the-art methods. As a proteomic-scale application, PEPPI was applied to model the interactions which occur between SARS-CoV-2 and human host cells during coronavirus infection, where 403 high-confidence interactions were identified with predictions covering 73% of a gold standard dataset from PSICQUIC and demonstrating significant complementarity with the most recent high-throughput experiments. PEPPI is available both as a webserver and in a standalone version and should be a powerful and generally applicable tool for computational screening of protein-protein interactions. |
---|