Cargando…
Uncertainty quantification in Covid-19 spread: Lockdown effects
We develop a Bayesian inference framework to quantify uncertainties in epidemiological models. We use SEIJR and SIJR models involving populations of susceptible, exposed, infective, diagnosed, dead and recovered individuals to infer from Covid-19 data rate constants, as well as their variations in r...
Autores principales: | Carpio, Ana, Pierret, Emile |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897887/ https://www.ncbi.nlm.nih.gov/pubmed/35280115 http://dx.doi.org/10.1016/j.rinp.2022.105375 |
Ejemplares similares
-
Parameter identification in epidemiological models
por: Carpio, Ana, et al.
Publicado: (2022) -
The spread of COVID-19 in London: Network effects and optimal lockdowns()
por: Julliard, Christian, et al.
Publicado: (2023) -
Uncertainty quantification in epidemiological models for the COVID-19 pandemic
por: Taghizadeh, Leila, et al.
Publicado: (2020) -
Impact of lockdowns on the spread of COVID-19 in Saudi Arabia
por: Alrashed, Saleh, et al.
Publicado: (2020) -
The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China
por: Meng, Xin, et al.
Publicado: (2022)