Cargando…
A survey of few-shot learning in smart agriculture: developments, applications, and challenges
With the rise of artificial intelligence, deep learning is gradually applied to the field of agriculture and plant science. However, the excellent performance of deep learning needs to be established on massive numbers of samples. In the field of plant science and biology, it is not easy to obtain a...
Autores principales: | Yang, Jiachen, Guo, Xiaolan, Li, Yang, Marinello, Francesco, Ercisli, Sezai, Zhang, Zhuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897954/ https://www.ncbi.nlm.nih.gov/pubmed/35248105 http://dx.doi.org/10.1186/s13007-022-00866-2 |
Ejemplares similares
-
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Learning few-shot imitation as cultural transmission
por: Bhoopchand, Avishkar, et al.
Publicado: (2023) -
Automatic pavement texture recognition using lightweight few-shot learning
por: Pan, Shuo, et al.
Publicado: (2023) -
Few-shot learning: temporal scaling in behavioral and dopaminergic learning
por: Burke, Dennis A, et al.
Publicado: (2023) -
High-Dimensional Separability for One- and Few-Shot Learning
por: Gorban, Alexander N., et al.
Publicado: (2021)