Cargando…
Development and Validation of a New Multiparametric Random Survival Forest Predictive Model for Breast Cancer Recurrence with a Potential Benefit to Individual Outcomes
PURPOSE: Breast cancer (BC) is a multi-factorial disease. Its individual prognosis varies; thus, individualized patient profiling is instrumental to improving BC management and individual outcomes. An economical, multiparametric, and practical model to predict BC recurrence is needed. PATIENTS AND M...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898179/ https://www.ncbi.nlm.nih.gov/pubmed/35256862 http://dx.doi.org/10.2147/CMAR.S346871 |
Sumario: | PURPOSE: Breast cancer (BC) is a multi-factorial disease. Its individual prognosis varies; thus, individualized patient profiling is instrumental to improving BC management and individual outcomes. An economical, multiparametric, and practical model to predict BC recurrence is needed. PATIENTS AND METHODS: We retrospectively investigated the clinical data of BC patients treated at the Third Affiliated Hospital of Sun Yat-sen University and Liuzhou Women and Children’s Medical Center from January 2013 to December 2020. Random forest-recursive feature elimination (run by R caret package) was used to determine the best variable set, and the random survival forest method was used to develop a predictive model for BC recurrence. RESULTS: The training and validations sets included 623 and 151 patients, respectively. We selected 14 variables, the pathological (TNM) stage, gamma-glutamyl transpeptidase, total cholesterol, Ki-67, lymphocyte count, low-density lipoprotein, age, apolipoprotein B, high-density lipoprotein, globulin, neutrophil count to lymphocyte count ratio, alanine aminotransferase, triglyceride, and albumin to globulin ratio, using random survival forest (RSF)-recursive feature elimination. We developed a recurrence prediction model using RSF. Using area under the receiver operating characteristic curve and Kaplan–Meier survival analyses, the model performance was determined to be accurate. C-indexes were 0.997 and 0.936 for the training and validation sets, respectively. CONCLUSION: The model could accurately predict BC recurrence. It aids clinicians in identifying high-risk patients and making treatment decisions for Breast cancer patients in China. This new multiparametric RSF model is instrumental for breast cancer recurrence prediction and potentially improves individual outcomes. |
---|