Cargando…
Development and Validation of a New Multiparametric Random Survival Forest Predictive Model for Breast Cancer Recurrence with a Potential Benefit to Individual Outcomes
PURPOSE: Breast cancer (BC) is a multi-factorial disease. Its individual prognosis varies; thus, individualized patient profiling is instrumental to improving BC management and individual outcomes. An economical, multiparametric, and practical model to predict BC recurrence is needed. PATIENTS AND M...
Autores principales: | Li, Huan, Liu, Ren-Bin, Long, Chen-Meng, Teng, Yuan, Cheng, Lin, Liu, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898179/ https://www.ncbi.nlm.nih.gov/pubmed/35256862 http://dx.doi.org/10.2147/CMAR.S346871 |
Ejemplares similares
-
Multiparametric Contrast-Enhanced Ultrasound in Early Prediction of Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival in Breast Cancer
por: Wan, Caifeng, et al.
Publicado: (2023) -
Multiple Survival Outcome Prediction of Glioblastoma Patients Based on Multiparametric MRI
por: Wang, Bin, et al.
Publicado: (2021) -
Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI
por: Zhu, Jingjin, et al.
Publicado: (2022) -
Identification of Lifestyle Behaviors Associated with Recurrence and Survival in Colorectal Cancer Patients Using Random Survival Forests
por: van Zutphen, Moniek, et al.
Publicado: (2021) -
Prediction the survival of patients with breast cancer using random survival forests for competing risks
por: NAJAFI-VOSOUGH, ROYA, et al.
Publicado: (2022)