Cargando…
Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages
M1-polarized macrophages are involved in chronic inflammatory diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanisms responsible for the activation of macrophages in NAFLD have not been fully elucidated. This study aimed at investigating the physiological mechanisms by...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898344/ https://www.ncbi.nlm.nih.gov/pubmed/35261562 http://dx.doi.org/10.7150/ijbs.57610 |
_version_ | 1784663623039188992 |
---|---|
author | Liu, Hanyun Niu, Qinghui Wang, Ting Dong, Hongjing Bian, Cheng |
author_facet | Liu, Hanyun Niu, Qinghui Wang, Ting Dong, Hongjing Bian, Cheng |
author_sort | Liu, Hanyun |
collection | PubMed |
description | M1-polarized macrophages are involved in chronic inflammatory diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanisms responsible for the activation of macrophages in NAFLD have not been fully elucidated. This study aimed at investigating the physiological mechanisms by which extracellular vesicles (EVs)-encapsulated microRNA-9-5p (miR-9-5p) derived from lipotoxic hepatocytes might activate macrophages in NALFD. After blood sample and cell collection, EVs were isolated and identified followed by co-culture with macrophages. Next, the palmitic acid-induced cell and high fat diet-induced mouse NALFD models were established to explore the in vitro and in vivo effects of EVs-loaded miR-9-5p on NAFLD as evidenced by inflammatory cell infiltration and inflammatory reactions in macrophages. Additionally, the targeting relationship between miR-9-5p and transglutaminase 2 (TGM2) was identified using dual-luciferase reporter gene assay. miR-9-5p was upregulated in the NAFLD-EVs, which promoted M1 polarization of THP-1 macrophages. Furthermore, miR-9-5p could target TGM2 to inhibit its expression. Downregulated miR-9-5p in NAFLD-EVs alleviated macrophage inflammation and M1 polarization as evidenced by reduced levels of macrophage inflammatory factors, positive rates of CD86(+) CD11b(+), and levels of macrophage surface markers in vitro. Moreover, the effect of silencing of miR-9-5p was replicated in vivo, supported by reductions in TG, TC, AST and ALT levels and attenuated pathological changes. Collectively, lipotoxic hepatocytes-derived EVs-loaded miR-9-5p downregulated the expression of TGM2 and facilitated M1 polarization of macrophages, thereby promoting the progression of NAFLD. This highlights a potential therapeutic target for treating NAFLD. |
format | Online Article Text |
id | pubmed-8898344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-88983442022-03-07 Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages Liu, Hanyun Niu, Qinghui Wang, Ting Dong, Hongjing Bian, Cheng Int J Biol Sci Research Paper M1-polarized macrophages are involved in chronic inflammatory diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanisms responsible for the activation of macrophages in NAFLD have not been fully elucidated. This study aimed at investigating the physiological mechanisms by which extracellular vesicles (EVs)-encapsulated microRNA-9-5p (miR-9-5p) derived from lipotoxic hepatocytes might activate macrophages in NALFD. After blood sample and cell collection, EVs were isolated and identified followed by co-culture with macrophages. Next, the palmitic acid-induced cell and high fat diet-induced mouse NALFD models were established to explore the in vitro and in vivo effects of EVs-loaded miR-9-5p on NAFLD as evidenced by inflammatory cell infiltration and inflammatory reactions in macrophages. Additionally, the targeting relationship between miR-9-5p and transglutaminase 2 (TGM2) was identified using dual-luciferase reporter gene assay. miR-9-5p was upregulated in the NAFLD-EVs, which promoted M1 polarization of THP-1 macrophages. Furthermore, miR-9-5p could target TGM2 to inhibit its expression. Downregulated miR-9-5p in NAFLD-EVs alleviated macrophage inflammation and M1 polarization as evidenced by reduced levels of macrophage inflammatory factors, positive rates of CD86(+) CD11b(+), and levels of macrophage surface markers in vitro. Moreover, the effect of silencing of miR-9-5p was replicated in vivo, supported by reductions in TG, TC, AST and ALT levels and attenuated pathological changes. Collectively, lipotoxic hepatocytes-derived EVs-loaded miR-9-5p downregulated the expression of TGM2 and facilitated M1 polarization of macrophages, thereby promoting the progression of NAFLD. This highlights a potential therapeutic target for treating NAFLD. Ivyspring International Publisher 2021-08-27 /pmc/articles/PMC8898344/ /pubmed/35261562 http://dx.doi.org/10.7150/ijbs.57610 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Liu, Hanyun Niu, Qinghui Wang, Ting Dong, Hongjing Bian, Cheng Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages |
title | Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages |
title_full | Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages |
title_fullStr | Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages |
title_full_unstemmed | Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages |
title_short | Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages |
title_sort | lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microrna-9-5p and activating macrophages |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898344/ https://www.ncbi.nlm.nih.gov/pubmed/35261562 http://dx.doi.org/10.7150/ijbs.57610 |
work_keys_str_mv | AT liuhanyun lipotoxichepatocytespromotenonalcoholicfattyliverdiseaseprogressionbydeliveringmicrorna95pandactivatingmacrophages AT niuqinghui lipotoxichepatocytespromotenonalcoholicfattyliverdiseaseprogressionbydeliveringmicrorna95pandactivatingmacrophages AT wangting lipotoxichepatocytespromotenonalcoholicfattyliverdiseaseprogressionbydeliveringmicrorna95pandactivatingmacrophages AT donghongjing lipotoxichepatocytespromotenonalcoholicfattyliverdiseaseprogressionbydeliveringmicrorna95pandactivatingmacrophages AT biancheng lipotoxichepatocytespromotenonalcoholicfattyliverdiseaseprogressionbydeliveringmicrorna95pandactivatingmacrophages |