Cargando…
An edge-driven multi-agent optimization model for infectious disease detection
This research work introduces a new intelligent framework for infectious disease detection by exploring various emerging and intelligent paradigms. We propose new deep learning architectures such as entity embedding networks, long-short term memory, and convolution neural networks, for accurately le...
Autores principales: | Djenouri, Youcef, Srivastava, Gautam, Yazidi, Anis, Lin, Jerry Chun-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898659/ https://www.ncbi.nlm.nih.gov/pubmed/35280108 http://dx.doi.org/10.1007/s10489-021-03145-0 |
Ejemplares similares
-
BIoMT-ISeg: Blockchain internet of medical things for intelligent segmentation
por: Belhadi, Asma, et al.
Publicado: (2023) -
A novel multi-scale based deep convolutional neural network for detecting COVID-19 from X-rays
por: Karnati, Mohan, et al.
Publicado: (2022) -
Tuning of Elasticsearch Configuration: Parameter Optimization Through Simultaneous Perturbation Stochastic Approximation
por: Haugerud, Hårek, et al.
Publicado: (2022) -
Optimize data-driven multi-agent simulation for COVID-19 transmission
por: Jin, Chao, et al.
Publicado: (2022) -
Multi-Model Running Latency Optimization in an Edge Computing Paradigm
por: Li, Peisong, et al.
Publicado: (2022)