Cargando…

Sitagliptin Attenuates the Cognitive Deficits in L-Methionine-Induced Vascular Dementia in Rats

Vascular dementia (VaD) is the second most prevalent type of dementia characterized by progressive cognitive deficits and is a major risk factor for the development of Alzheimer's disease and other neurodegenerative disorders. This study is aimed at determining the potential neuroprotective eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Khodir, Suzan A., Faried, Manar A., Abd-Elhafiz, Huda I., Sweed, Eman M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898801/
https://www.ncbi.nlm.nih.gov/pubmed/35265716
http://dx.doi.org/10.1155/2022/7222590
Descripción
Sumario:Vascular dementia (VaD) is the second most prevalent type of dementia characterized by progressive cognitive deficits and is a major risk factor for the development of Alzheimer's disease and other neurodegenerative disorders. This study is aimed at determining the potential neuroprotective effect of sitagliptin (STG) on cognitive deficits in L-methionine-induced VaD in rats and the possible underlying mechanisms. 30 adult male Wistar albino rats were divided equally (n = 10) into three groups: control, VaD, and VaD + STG groups. The cognitive performance of the animals was conducted by open field, elevated plus maze, Y-maze, novel object recognition, and Morris water maze tests. Serum homocysteine, TNF-α, IL-6, IL-10, total cholesterol, and triglycerides levels were assessed together with hippocampal MDA, SOD, and BDNF. Histopathological and immunohistochemical assessments of the thoracic aorta and hippocampus (CA1 region) were also performed. Chronic L-methionine administration impaired memory and learning and induced anxiety. On the other hand, STG protected against cognitive deficits through improving oxidative stress biomarkers, inflammatory mediators, lipid profiles, and hippocampus level of BDNF as well as decreasing caspase-3 and GFAP and increasing Ki-67 immunoreactions in the hippocampus. Also, STG improved the endothelial dysfunction via upregulation of aortic eNOS immunoreaction. STG improved the cognitive deficits of L-methionine-induced VaD by its antioxidant, anti-inflammatory, antiapoptotic, and neurotrophic effects. These findings suggest that STG may be a promising future agent for protection against VaD.