Cargando…
Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice
BACKGROUND: Obesity and type 2 diabetes mellitus (DM) contribute to a higher mortality rate in patients with septic acute kidney injury (AKI) during sepsis. Reactive oxygen species (ROS) is the major injury factor for sepsis. This study was aimed at exploring the potential therapeutic drug for septi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898803/ https://www.ncbi.nlm.nih.gov/pubmed/35265258 http://dx.doi.org/10.1155/2022/1193734 |
_version_ | 1784663748604067840 |
---|---|
author | Yao, Weifeng Liao, Haofeng Pang, Mengya Pan, Lijie Guan, Yu Huang, Xiaolei Hei, Ziqing Luo, Chenfang Ge, Mian |
author_facet | Yao, Weifeng Liao, Haofeng Pang, Mengya Pan, Lijie Guan, Yu Huang, Xiaolei Hei, Ziqing Luo, Chenfang Ge, Mian |
author_sort | Yao, Weifeng |
collection | PubMed |
description | BACKGROUND: Obesity and type 2 diabetes mellitus (DM) contribute to a higher mortality rate in patients with septic acute kidney injury (AKI) during sepsis. Reactive oxygen species (ROS) is the major injury factor for sepsis. This study was aimed at exploring the potential therapeutic drug for septic AKI targeting on ROS. METHODS: A murine septic AKI model was established in both wild-type and high-fat diet-fed (HFD) mice. NADPH oxidase inhibitor Vas2870 was used in vivo to explore the role of NADPH oxidase in ROS release in septic AKI in diabetic mice. Ferrostatin-1 was administered to investigate the role of ferroptosis in ROS accumulation during NADPH oxidase activating in septic AKI in diabetic mice. RESULTS: Compared to chow diet-fed mice, HFD diabetic mice which were subjected to LPS exhibited aggravated renal function (blood urea nitrogen, creatinine clearance, and serum cystatin C) and oxidative stress (malondialdehyde, 4-HNE, ROS, 8-OHdG, and NADPH oxidase), thus resulting in a higher mortality rate. Septic renal injury was significantly attenuated by the ferroptosis inhibitor Fer-1 in HFD-challenged mice. Furthermore, ferroptosis accumulation and related protein expression (ASCL4, FTH1, and GPX4) were altered by LPS stimulation in HFD-challenged mice and suppressed by NADPH oxidase inhibition via Vas2870 in vivo. In summary, NADPH inhibition restored septic renal function from injury by suppressing ferroptosis accumulation in HFD-challenged mice. CONCLUSION: These results suggest that targeting NADPH-mediated ROS release and ferroptosis accumulation is a novel therapeutic strategy to protect the kidney from septic injury in patients with obesity and type 2 DM. |
format | Online Article Text |
id | pubmed-8898803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-88988032022-03-08 Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice Yao, Weifeng Liao, Haofeng Pang, Mengya Pan, Lijie Guan, Yu Huang, Xiaolei Hei, Ziqing Luo, Chenfang Ge, Mian Oxid Med Cell Longev Research Article BACKGROUND: Obesity and type 2 diabetes mellitus (DM) contribute to a higher mortality rate in patients with septic acute kidney injury (AKI) during sepsis. Reactive oxygen species (ROS) is the major injury factor for sepsis. This study was aimed at exploring the potential therapeutic drug for septic AKI targeting on ROS. METHODS: A murine septic AKI model was established in both wild-type and high-fat diet-fed (HFD) mice. NADPH oxidase inhibitor Vas2870 was used in vivo to explore the role of NADPH oxidase in ROS release in septic AKI in diabetic mice. Ferrostatin-1 was administered to investigate the role of ferroptosis in ROS accumulation during NADPH oxidase activating in septic AKI in diabetic mice. RESULTS: Compared to chow diet-fed mice, HFD diabetic mice which were subjected to LPS exhibited aggravated renal function (blood urea nitrogen, creatinine clearance, and serum cystatin C) and oxidative stress (malondialdehyde, 4-HNE, ROS, 8-OHdG, and NADPH oxidase), thus resulting in a higher mortality rate. Septic renal injury was significantly attenuated by the ferroptosis inhibitor Fer-1 in HFD-challenged mice. Furthermore, ferroptosis accumulation and related protein expression (ASCL4, FTH1, and GPX4) were altered by LPS stimulation in HFD-challenged mice and suppressed by NADPH oxidase inhibition via Vas2870 in vivo. In summary, NADPH inhibition restored septic renal function from injury by suppressing ferroptosis accumulation in HFD-challenged mice. CONCLUSION: These results suggest that targeting NADPH-mediated ROS release and ferroptosis accumulation is a novel therapeutic strategy to protect the kidney from septic injury in patients with obesity and type 2 DM. Hindawi 2022-02-27 /pmc/articles/PMC8898803/ /pubmed/35265258 http://dx.doi.org/10.1155/2022/1193734 Text en Copyright © 2022 Weifeng Yao et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yao, Weifeng Liao, Haofeng Pang, Mengya Pan, Lijie Guan, Yu Huang, Xiaolei Hei, Ziqing Luo, Chenfang Ge, Mian Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice |
title | Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice |
title_full | Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice |
title_fullStr | Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice |
title_full_unstemmed | Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice |
title_short | Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice |
title_sort | inhibition of the nadph oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898803/ https://www.ncbi.nlm.nih.gov/pubmed/35265258 http://dx.doi.org/10.1155/2022/1193734 |
work_keys_str_mv | AT yaoweifeng inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT liaohaofeng inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT pangmengya inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT panlijie inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT guanyu inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT huangxiaolei inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT heiziqing inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT luochenfang inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice AT gemian inhibitionofthenadphoxidasepathwayreducesferroptosisduringsepticrenalinjuryindiabeticmice |