Cargando…
A Data-Efficient Framework for the Identification of Vaginitis Based on Deep Learning
Vaginitis is a gynecological disease affecting the health of millions of women all over the world. The traditional diagnosis of vaginitis is based on manual microscopy, which is time-consuming and tedious. The deep learning method offers a fast and reliable solution for an automatic early diagnosis...
Autores principales: | Hao, Ruqian, Liu, Lin, Zhang, Jing, Wang, Xiangzhou, Liu, Juanxiu, Du, Xiaohui, He, Wen, Liao, Jicheng, Liu, Lu, Mao, Yuanying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898862/ https://www.ncbi.nlm.nih.gov/pubmed/35265294 http://dx.doi.org/10.1155/2022/1929371 |
Ejemplares similares
-
Morphological components detection for super-depth-of-field bio-micrograph based on deep learning
por: Du, Xiaohui, et al.
Publicado: (2021) -
Trichomonas Detection in Leucorrhea Based on VIBE Method
por: Du, Xiaohui, et al.
Publicado: (2019) -
Automatic classification of cells in microscopic fecal images using convolutional neural networks
por: Du, Xiaohui, et al.
Publicado: (2019) -
Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics
por: Zhao, Jiaxi, et al.
Publicado: (2023) -
Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN
por: Zhang, Jing, et al.
Publicado: (2021)