Cargando…
Predicting Colorectal Cancer Using Residual Deep Learning with Nursing Care
Presently, colorectal cancer is the second most dangerous cancer; around 13% of people have been affected; and it requires an effective image analysis and earlier cancer prediction (IAECP) system for reducing the mortality rate. Here, the IAECP system uses MRI radio imaging for predicting colorectal...
Autor principal: | Wang, Lina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898865/ https://www.ncbi.nlm.nih.gov/pubmed/35291423 http://dx.doi.org/10.1155/2022/7996195 |
Ejemplares similares
-
Interpretable survival prediction for colorectal cancer using deep learning
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Using deep-learning predictions of inter-residue distances for model validation
por: Sánchez Rodríguez, Filomeno, et al.
Publicado: (2022) -
Predicting protein residue-residue contacts using random forests and deep networks
por: Luttrell, Joseph, et al.
Publicado: (2019) -
Pattern to Knowledge: Deep Knowledge-Directed Machine Learning for Residue-Residue Interaction Prediction
por: Wong, Andrew K. C., et al.
Publicado: (2018) -
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study
por: Kather, Jakob Nikolas, et al.
Publicado: (2019)