Cargando…
Crop Pest Recognition in Real Agricultural Environment Using Convolutional Neural Networks by a Parallel Attention Mechanism
Crop pests are a major agricultural problem worldwide because the severity and extent of their occurrence threaten crop yield. However, traditional pest image segmentation methods are limited, ineffective and time-consuming, which causes difficulty in their promotion and application. Deep learning m...
Autores principales: | Zhao, Shengyi, Liu, Jizhan, Bai, Zongchun, Hu, Chunhua, Jin, Yujie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899009/ https://www.ncbi.nlm.nih.gov/pubmed/35265096 http://dx.doi.org/10.3389/fpls.2022.839572 |
Ejemplares similares
-
Crop pest image classification based on improved densely connected convolutional network
por: Peng, Hongxing, et al.
Publicado: (2023) -
Crop pest detection by three-scale convolutional neural network with attention
por: Wang, Xuqi, et al.
Publicado: (2023) -
Toward Sustainability: Trade-Off Between Data Quality and Quantity in Crop Pest Recognition
por: Li, Yang, et al.
Publicado: (2021) -
ASP-Det: Toward Appearance-Similar Light-Trap Agricultural Pest Detection and Recognition
por: Wang, Fenmei, et al.
Publicado: (2022) -
Editorial: Disease and pest resistance in legume crops
por: Kaur, Sukhjiwan, et al.
Publicado: (2023)