Cargando…
Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease‐19 (COVID‐19). We aimed to a) identify complement‐related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) pre...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899198/ https://www.ncbi.nlm.nih.gov/pubmed/35064759 http://dx.doi.org/10.1111/jcmm.17098 |
_version_ | 1784663861547237376 |
---|---|
author | Asteris, Panagiotis G. Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia‐Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles |
author_facet | Asteris, Panagiotis G. Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia‐Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles |
author_sort | Asteris, Panagiotis G. |
collection | PubMed |
description | There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease‐19 (COVID‐19). We aimed to a) identify complement‐related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement‐related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID‐19. Through targeted next‐generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH‐related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID‐19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID‐19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID‐19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype. |
format | Online Article Text |
id | pubmed-8899198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88991982022-03-11 Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks Asteris, Panagiotis G. Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia‐Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles J Cell Mol Med Original Articles There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease‐19 (COVID‐19). We aimed to a) identify complement‐related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement‐related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID‐19. Through targeted next‐generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH‐related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID‐19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID‐19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID‐19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype. John Wiley and Sons Inc. 2022-01-22 2022-03 /pmc/articles/PMC8899198/ /pubmed/35064759 http://dx.doi.org/10.1111/jcmm.17098 Text en © 2022 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Asteris, Panagiotis G. Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia‐Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks |
title | Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks |
title_full | Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks |
title_fullStr | Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks |
title_full_unstemmed | Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks |
title_short | Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks |
title_sort | genetic prediction of icu hospitalization and mortality in covid‐19 patients using artificial neural networks |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899198/ https://www.ncbi.nlm.nih.gov/pubmed/35064759 http://dx.doi.org/10.1111/jcmm.17098 |
work_keys_str_mv | AT asterispanagiotisg geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT gavriilakieleni geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT touloumenidoutasoula geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT koravouevaggeliaevdoxia geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT koutramaria geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT papayannipenelopegeorgia geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT pouleresalexandros geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT karalivassiliki geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT lemonisminase geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT mamouanna geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT skentouathanasiad geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT papalexandriapostolia geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT varelaschristos geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT chatzopouloufani geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT chatzidimitrioumaria geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT chatzidimitrioudimitrios geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT velenianastasia geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT raptievdoxia geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT kioumisioannis geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT kaimakamisevaggelos geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT bitzanimilly geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT boumpasdimitrios geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT tsantesargyris geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT sotiropoulosdamianos geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT papadopoulouanastasia geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT kalantzisioannisg geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT vallianatoulydiaa geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT armaghanidanialj geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT cavaleriliborio geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT gandomiamirh geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT hajihassanimohsen geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT hasanipanahmahdi geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT koopialipoormohammadreza geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT lourencopaulob geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT samuipijush geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT zhoujian geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT sakellariioanna geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT valsamiserena geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT politoumarianna geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT kokorisstyliani geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks AT anagnostopoulosachilles geneticpredictionoficuhospitalizationandmortalityincovid19patientsusingartificialneuralnetworks |