Cargando…
MolData, a molecular benchmark for disease and target based machine learning
Deep learning’s automatic feature extraction has been a revolutionary addition to computational drug discovery, infusing both the capabilities of learning abstract features and discovering complex molecular patterns via learning from molecular data. Since biological and chemical knowledge are necess...
Autores principales: | Keshavarzi Arshadi, Arash, Salem, Milad, Firouzbakht, Arash, Yuan, Jiann Shiun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899453/ https://www.ncbi.nlm.nih.gov/pubmed/35255958 http://dx.doi.org/10.1186/s13321-022-00590-y |
Ejemplares similares
-
AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning
por: Salem, Milad, et al.
Publicado: (2022) -
DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2020) -
Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2020) -
MEMES: Machine learning framework for Enhanced MolEcular Screening
por: Mehta, Sarvesh, et al.
Publicado: (2021) -
MoleculeNet: a benchmark for molecular machine learning
por: Wu, Zhenqin, et al.
Publicado: (2017)