Cargando…
Transfer Learning Approaches for Neuroimaging Analysis: A Scoping Review
Deep learning algorithms have been moderately successful in diagnoses of diseases by analyzing medical images especially through neuroimaging that is rich in annotated data. Transfer learning methods have demonstrated strong performance in tackling annotated data. It utilizes and transfers knowledge...
Autores principales: | Ardalan, Zaniar, Subbian, Vignesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899512/ https://www.ncbi.nlm.nih.gov/pubmed/35265830 http://dx.doi.org/10.3389/frai.2022.780405 |
Ejemplares similares
-
A fully automated approach involving neuroimaging and deep learning for Parkinson’s disease detection and severity prediction
por: Erdaş, Çağatay Berke, et al.
Publicado: (2023) -
Multimodal deep learning for liver cancer applications: a scoping review
por: Siam, Aisha, et al.
Publicado: (2023) -
A Transfer Learning–Based Active Learning Framework for Brain Tumor Classification
por: Hao, Ruqian, et al.
Publicado: (2021) -
Predicting ward transfer mortality with machine learning
por: Lezama, Jose L., et al.
Publicado: (2023) -
Benefits of Adaptive Learning Transfer From Typing-Based Learning to Speech-Based Learning
por: Wilschut, Thomas, et al.
Publicado: (2021)