Cargando…
Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives
Despite the encouraging breakthroughs in medical development, cancer remains one of the principle causes of death and threatens human health around the world. Conventional treatment strategies often kill cancer cells at the expense of serious adverse effects or great pain, which yet is not able to a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899561/ https://www.ncbi.nlm.nih.gov/pubmed/35265211 http://dx.doi.org/10.7150/thno.69628 |
_version_ | 1784663942735331328 |
---|---|
author | Tang, Lu Li, Jing Pan, Ting Yin, Yue Mei, Yijun Xiao, Qiaqia Wang, Ruotong Yan, Ziwei Wang, Wei |
author_facet | Tang, Lu Li, Jing Pan, Ting Yin, Yue Mei, Yijun Xiao, Qiaqia Wang, Ruotong Yan, Ziwei Wang, Wei |
author_sort | Tang, Lu |
collection | PubMed |
description | Despite the encouraging breakthroughs in medical development, cancer remains one of the principle causes of death and threatens human health around the world. Conventional treatment strategies often kill cancer cells at the expense of serious adverse effects or great pain, which yet is not able to achieve an effective cure. Therefore, it is urgent to seek for other novel anticancer approaches to improve the survival rate and life quality of cancer patients. During the past decades, nanotechnology has made tremendous progress in cancer therapy due to many advantages such as targeted drug delivery, decreased dosage-related adverse effects and prolonged drug circulation time. In the context of nanomedicine, carbon nanomaterials occupy very significant positions. Owing to their innate outstanding optical, thermal, electronic, and mechanic features, easy functionalization possibility and large surface for drug loading, carbon nanomaterials serve as not only drug carriers, but also multifunctional platforms to combine with diverse treatment and diagnosis modalities against cancer. Therefore, developing more carbon-based nanoplatforms plays a critical role in cancer theranostics and an update overview that summarizes the recent achievement of carbon nanomaterial-mediated anticancer theranostic approaches is of necessity. In this review, five typical and widely investigated carbon nanomaterials including graphene, graphdiyne, fullerene, carbon nanotubes and carbon quantum dots are introduced in detail from the aspect of treatment strategies based on both cancer cells and tumor microenvironment-involved therapeutic targets. Meanwhile, modern diagnostic methods and clinical translatability of carbon nanomaterials will be highlighted as well. |
format | Online Article Text |
id | pubmed-8899561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-88995612022-03-08 Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives Tang, Lu Li, Jing Pan, Ting Yin, Yue Mei, Yijun Xiao, Qiaqia Wang, Ruotong Yan, Ziwei Wang, Wei Theranostics Review Despite the encouraging breakthroughs in medical development, cancer remains one of the principle causes of death and threatens human health around the world. Conventional treatment strategies often kill cancer cells at the expense of serious adverse effects or great pain, which yet is not able to achieve an effective cure. Therefore, it is urgent to seek for other novel anticancer approaches to improve the survival rate and life quality of cancer patients. During the past decades, nanotechnology has made tremendous progress in cancer therapy due to many advantages such as targeted drug delivery, decreased dosage-related adverse effects and prolonged drug circulation time. In the context of nanomedicine, carbon nanomaterials occupy very significant positions. Owing to their innate outstanding optical, thermal, electronic, and mechanic features, easy functionalization possibility and large surface for drug loading, carbon nanomaterials serve as not only drug carriers, but also multifunctional platforms to combine with diverse treatment and diagnosis modalities against cancer. Therefore, developing more carbon-based nanoplatforms plays a critical role in cancer theranostics and an update overview that summarizes the recent achievement of carbon nanomaterial-mediated anticancer theranostic approaches is of necessity. In this review, five typical and widely investigated carbon nanomaterials including graphene, graphdiyne, fullerene, carbon nanotubes and carbon quantum dots are introduced in detail from the aspect of treatment strategies based on both cancer cells and tumor microenvironment-involved therapeutic targets. Meanwhile, modern diagnostic methods and clinical translatability of carbon nanomaterials will be highlighted as well. Ivyspring International Publisher 2022-02-21 /pmc/articles/PMC8899561/ /pubmed/35265211 http://dx.doi.org/10.7150/thno.69628 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Review Tang, Lu Li, Jing Pan, Ting Yin, Yue Mei, Yijun Xiao, Qiaqia Wang, Ruotong Yan, Ziwei Wang, Wei Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
title | Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
title_full | Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
title_fullStr | Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
title_full_unstemmed | Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
title_short | Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
title_sort | versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899561/ https://www.ncbi.nlm.nih.gov/pubmed/35265211 http://dx.doi.org/10.7150/thno.69628 |
work_keys_str_mv | AT tanglu versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT lijing versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT panting versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT yinyue versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT meiyijun versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT xiaoqiaqia versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT wangruotong versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT yanziwei versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives AT wangwei versatilecarbonnanoplatformsforcancertreatmentanddiagnosisstrategiesapplicationsandfutureperspectives |